Tag Archives: china coupling

China manufacturer GS Spider Coupling for Machine Center Motor Xyz (Red)

Product Description

Product Description

GS Spider Coupling for Machine Center Motor XYZ (Red)
The elastomer insert is equalizing element of coupling. It transmits torque without backlash or vibration. The elastomer insert defines the characteristics of the entire drive system. Backlash is eliminated by the press fit of the elastomer into the hubs. Through variation of the shore hardness of the elastomer insert, the coupling system can be optimized for the ideal torsional characteristics.
GS spider insert for jaw coupling, PU spacer, instead of KTR CHINAMFG elastomer. This GS spider are used for mechanical jaw coupling, as a joint in the transmission shaft. Running quality and service life of the coupling are improved by special pu..
GS Spider Coupling for Machine Center Motor XYZ (Red)
Torsion: 22.4~2500NM
Wear And Tear: <0.05cm3 / 1.61km
Material: Thermally Stable TPU
Hardness: Yellow SHA 92, Blue SHA95, Red SHA98
Temperature: -40~100°C
Standard: KTR, Germany

Part No. D (mm) d (mm) H (mm) No. Of Teeth
GS-5 10 6 4
GS-7 14 8 4
GS-9 20 7 10 4
GS-12 25 8 12 4
GS-14 30 10 12 4
GS-19 40 18 14.5 6
GS-24 54 26 15.2 8
GS-28 65 30 19 8
GS-38 80 38 22 8
GS-42 95 46 24 8
GS-48 104 51 25.5 8
GS-55 120 60 27 8
GS-65 135 68 32 8
GS-75 160 80 37 10

GS Spider Coupling for Machine Center Motor XYZ (Red)

PRODUCT ADVANTAGES

With special secret formula, our coupling spiders can be stably operated for 2~5 years under different working conditions, which is very closed to the KTR’s service life.
More Products:

Various types of couplings rubber elastomer models are as follows:

MT rubber coupling (MT1-MT13),

GR rubber coupling (GR10-GR180),

GS rubber coupling (GS7-GS90),

T Hexagon back wheel coupling (hexagonal elasticity pad T70 ~ 210).,

the fluid coupling (YOX),

L-type claw coupling hexagonal coupling (L35-L276),

H-type elastic block (H80-H350),

NM couplings elastomer (NM50 -NM214).

HRC Coupling elastomer (HRC60-HRC280).

Gear Sleeve Rubber Coupling Elastomer cushion (gear 4J-10J).

NL inner tooth gear coupling sleeve (NL1-NL10).

Oldham and non-standard high strength Spider rubber coupling. 

Main Products:

custom couplings Plum pad, HRC couplings, Martin couplings, HRC couplings supply elastomer, HRC couplings elastic block, Gear Sleeve Rubber Coupling Elastomer, block rubber supply couplings, coupling rubber parts, coupling is rubber body, ZheJiang custom rubber gear coupling, screw compressor couplings, rubber supply gear couplings, Atlas coupling, screw compressor coupling, ZheJiang  wholesale production of polyurethane gear, supply H-linking couplings, H-shaped elastic block coupling, H-type coupling rubber elastomer blocks

Please inquire us if you need Rubber Coupling Elastomer and other types couplings inserts.

Different  Types  Of  Hydraulic  Seals
Application Type Material
Rod Seals UN  TPU(PU,Polyurethane) 
UNS  TPU(PU,Polyurethane)
UHS  TPU(PU,Polyurethane)
IDU  TPU(PU,Polyurethane)
U+S  PU+NBR
UPH  NBR & FKM
Step Seal  NBR+PTFE
VES  Rubber+Fabric
IDI  PU
ISI  PU
Piston Seals SPG  NBR+PTFE
SPGW  NBR+PTFE
SPGO  NBR+PTFE
KDAS  NBR+PU+POM
ODI  PU
OSI  PU
ODU  PU
Dust Wiper Seals DH/DHS  PU
LBH  NBR & FKM 
J/JA  PU
DKB  NBR & FKM +Metal
DKBI  PU+Metal
DSI  PU
Wear Ring WR  Phenolic Fabric
Xihu (West Lake) Dis. Tape  PTFE
Xihu (West Lake) Dis. Tape  Phenolic Fabric
Buffer Seal HBY  PU+Nylon
Back-up Ring O-Ring  NBR & FKM
X-Ring  NBR & FKM
PTFE Washer  PTFE

GS Spider Coupling for Machine Center Motor XYZ (Red)

Different   Type   Rotary   Shaft   Oil   Seal
Type Material Lip Spring Feature
TC NBR & FKM Double Lips Single Metal Coverd Rubber
TB NBR Double Lips Single Metal Case
TA NBR Double Lips Single Metal Case
SC NBR & FKM Single Single Double Metal Shell
SB NBR Single Single Metal Case
SA NBR Single Single Double Metal Shell
DC NBR Double Lips Double Double Springs
VC NBR & FKM Single Without Metal Coverd Rubber
VB NBR Single Without Metal Case
TCV NBR Double Lips Single High Pressure
TCN NBR Double Lips Single High Pressure
PTFE PTFE Single & Double Lips Without Stainless steel
HTCL NBR & FKM Double Lips Single Inside thread L
HTCR NBR & FKM Double Lips Single Inside thread R
……………………………………………………………………………………………
More types please contact us. 
Customization is welcome.

Related Products

GS Spider Coupling for Machine Center Motor XYZ (Red)
Oil seals serve to prevent the leakage not only of lubricants, but also water, chemicals, and gas from “gaps” in machinery. Oil seals also serve to prevent the intrusion of dust, soil and sand from the outside air.

Company Profile

 HangZhou CHINAMFG Sealing Sci-Tech Co., Ltd. is a scientific and technological production enterprise integrating R&D, production and sales. Our production plant covers an area of about 2,000 square CHINAMFG and has 150 employees.

QMS (Quality Management System):
ISO9001, ISO/TS16949

Our Products: 
O Ring, Oil Seal, Hydraulic & Pneumatic Seal, Custom CHINAMFG Parts

Production Standard: 
ASTMD2000

Product Application Scope:
Engineering machinery, hydraulic pneumatic, petroleum and natural gas, automobile seals, valves and pipelines, electronic home appliances, food grade, electric power, chemical industry, coal mine, metallurgy, engineering shield machine and other industries, supporting domestic automobile and machinery manufacturers.

We had sell to:  
More than 40 countries including the United States, Germany, Japan, Britain, Italy, Spain, Russia, Canada, Australia, Malaysia, Philippines, Indonesia, Mexico, Brazil, Peru, Chile, Argentina, Israel, Saudi Arabia, Lebanon, Ukraine, Pakistan, Thailand, Vietnam, etc. 

Packaging & Shipping

GS Spider Coupling for Machine Center Motor XYZ (Red)
Ship by express, by air, by sea at buyer’s option.
 rubber oil seal tc oil seal rubber seal manufacturer oil seal tc nbr oil seal tc oil seal fkm oil seal china manufacturer oil seal tc oil seal nbr tc oil seal fkm tc oil seal manufacturer

FAQ

Q 1. What’s the payment term?
A: We accept T/T 50% deposit and 50% balance against copy of B/L or L/C at sight, West Union,VISA,Paypal is also accepted. rubber oil seal tc oil seal rubber seal manufacturer oil seal tc nbr oil seal tc oil seal fkm oil seal china manufacturer oil seal tc oil seal nbr tc oil seal fkm tc oil seal manufacturer
Q 2. What is the normal lead time for product orders?
A: Generally it is 1-2 days if the goods are in stock. or it is 5-10 days if the goods are not in stock, it is according to quantity.tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal

 tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture

 Q 3. What is your standard packing?
A: All the goods will be packed by carton box and loaded with pallets. Special packing method can be accepted when needed.rubber oil seal tc oil seal rubber seal manufacturer oil seal tc nbr oil seal tc oil seal fkm oil seal china manufacturer oil seal tc oil seal nbr tc oil seal fkm tc oil seal manufacturer

Q 4. Could you please tell us the month capacity of your products ?
A: It depends on which model, we produce more than 2500 tons rubber materials per month.

tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture
Q 5. what kind of certificates you have ?
A1: We have been ISO9001:2008 and ISO14001:2004 certified by SGS since 2015.
A2: We have various rubber compounds approved by ROHS and REACH.

tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture
Q6: How to check the quality of the bulk order?
A1: We provide preproduction samples before mass production for all customers if needed.
A2: We accept third party inspection such as TUV, INTERTEK, BV, etc.

tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture
Q 7: Do you use any international standards for the rubber products?
A: Yes, we mainly use ASTM D2000 standard to define the quality of the rubber materials, tolerances as per ISO3302, ISO2768, etc.rubber oil seal tc oil seal rubber seal manufacturer oil seal tc nbr oil seal tc oil seal fkm oil seal china manufacturer oil seal tc oil seal nbr tc oil seal fkm tc oil seal manufacturer

Q8: What materials are available to produce from your side?
A: NBR, EPDM, SILICONE, FPM(FKM), NEOPRENE(CR), NR, IIR, SBR, ACM, AEM, Fluorosilicone(FVMQ), FFKM, Liquid Silicone, Sponge, etc. tc oi
l seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture

Q9: Do you provide maintenance on tooling?
A: We maintain all tooling and will replace as needed.tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture

Q10: How many empolyees you have?
A:We have 150 empolyees at time of December 2571. tc oil seal tc oil seal nbr tc oil seal nbr rubber oil seal fkm oil seal fkm rubber oil seal manufacture china oil seal manufacture

If you have any other question, please don’t hesitate to contact us:

GS Spider Coupling for Machine Center Motor XYZ (Red) /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

spider coupling

How does a spider coupling compare to other types of couplings, such as jaw couplings or gear couplings?

Spider couplings, jaw couplings, and gear couplings are all commonly used in mechanical systems for power transmission and misalignment compensation. Each type of coupling has its own unique characteristics and advantages. Here’s a comparison:

  • Spider Couplings: Spider couplings, also known as flexible couplings or jaw/spider couplings, use an elastomeric spider to transmit torque and accommodate misalignment. They are known for their flexibility, vibration dampening, and ability to handle angular, radial, and axial misalignment. Spider couplings are suitable for a wide range of applications and are cost-effective solutions for moderate torque requirements and misalignment compensation.
  • Jaw Couplings: Jaw couplings consist of two hubs with curved jaws that interlock and transmit torque. They are simple to install and provide a secure connection. However, jaw couplings are less effective in accommodating misalignment compared to spider couplings. They are suitable for applications with minimal misalignment and moderate torque transmission.
  • Gear Couplings: Gear couplings use toothed gears to transmit torque between shafts. They are robust and capable of transmitting high torque while accommodating some misalignment. Gear couplings are often used in heavy-duty applications that require precise torque transmission and can tolerate limited misalignment.

When comparing these couplings, spider couplings stand out for their versatility in handling various types of misalignment and providing vibration dampening. Jaw couplings are simpler and suitable for applications with minimal misalignment, while gear couplings excel in heavy-duty applications with high torque requirements. The choice between these couplings depends on the specific requirements of the application, including torque, misalignment compensation, space limitations, and cost considerations.

spider coupling

How do you diagnose and troubleshoot issues related to spider couplings in machinery systems?

Diagnosing and troubleshooting issues with spider couplings requires a systematic approach to identify the root cause of the problem and implement effective solutions. Here are the steps to diagnose and troubleshoot spider coupling-related issues:

  1. Visual Inspection: Conduct a thorough visual inspection of the coupling, looking for visible signs of wear, damage, or misalignment. Check for cracks, tears, and irregularities in the elastomeric spider.
  2. Vibration Analysis: Use vibration analysis tools to assess vibration levels during operation. Elevated vibration can indicate issues such as misalignment, wear, or unbalanced loads.
  3. Performance Monitoring: Monitor the performance of connected machinery or equipment. If there’s a decrease in torque transmission, efficiency, or overall performance, it could be attributed to coupling problems.
  4. Alignment Check: Ensure proper alignment between shafts connected by the coupling. Misalignment can cause uneven load distribution and lead to coupling wear.
  5. Temperature Monitoring: Monitor the temperature of the coupling during operation. Abnormal temperature increases could point to excessive friction and wear.
  6. Inspect Fasteners: Check for loose or worn-out fasteners such as bolts, nuts, and screws that secure the coupling components. Loose fasteners can contribute to misalignment and coupling issues.
  7. Inspect Lubrication: Check the lubrication of the coupling components. Inadequate or degraded lubrication can lead to increased friction and wear.
  8. Consider Environmental Factors: Evaluate the operating environment for factors such as temperature variations, humidity, and exposure to chemicals. Environmental conditions can affect coupling performance.
  9. Review Maintenance Records: Review the maintenance history and records of the coupling and connected equipment. This can provide insights into past issues and potential causes.

Based on the diagnostic results, appropriate troubleshooting steps can be taken. These might include adjusting alignment, replacing damaged components, re-lubricating, or replacing the elastomeric spider. Regular maintenance and prompt troubleshooting are essential to ensure the reliable and efficient operation of machinery systems utilizing spider couplings.

spider coupling

What are the advantages of using a spider coupling in industrial applications?

Spider couplings offer several advantages that make them a popular choice for various industrial applications. Here are the key advantages:

  • Misalignment Compensation: Spider couplings can accommodate angular, axial, and parallel misalignments between connected shafts. This ability to compensate for misalignment reduces stress on components and extends equipment lifespan.
  • Flexibility: The elastomeric spider provides flexibility that allows for slight movements between the shafts. This flexibility helps prevent excessive wear, reduces vibration transmission, and minimizes the risk of component failure.
  • Vibration Dampening: The elastomeric material of the spider acts as a shock absorber, dampening vibrations generated by rotating machinery. This can lead to improved equipment performance, reduced noise, and enhanced operator comfort.
  • Easy Installation: Spider couplings have a simple design with minimal components, making them easy to install and replace. Their design eliminates the need for precise alignment during installation, saving time and effort.
  • Torque Transmission: Spider couplings efficiently transmit torque from one shaft to another, ensuring that power is effectively transferred between connected components.
  • Minimal Maintenance: Spider couplings require minimal maintenance due to their self-lubricating and wear-resistant elastomeric material. This reduces downtime and maintenance costs for industrial machinery.
  • Compact Design: Spider couplings have a compact and lightweight design, making them suitable for applications where space is limited. Their small size allows for easy integration into various systems.
  • Cost-Effective: Spider couplings are relatively inexpensive compared to other coupling types, making them a cost-effective solution for a wide range of industrial applications.
  • Electric Insulation: In applications where electrical isolation is important, spider couplings made from electrically insulating materials can prevent the transmission of electrical currents between shafts.
  • Wide Range of Sizes: Spider couplings are available in various sizes and configurations to accommodate different shaft diameters and torque requirements.

Due to these advantages, spider couplings are commonly used in industries such as manufacturing, automation, packaging, material handling, and more, where flexibility, misalignment compensation, and efficient torque transmission are essential for optimal equipment performance.

China manufacturer GS Spider Coupling for Machine Center Motor Xyz (Red)  China manufacturer GS Spider Coupling for Machine Center Motor Xyz (Red)
editor by CX 2024-05-17

China high quality High Quality High Precision Ml Elastic Flexible Curved Jaw Rubber Spiders Shaft Coupling for Pump

Product Description

High Quality High Precision ml elastic Flexible curved jaw rubber spiders shaft coupling For Pump

Description:

A jaw coupling is a type of general purpose power transmission coupling that also can be used in motion control (servo) applications. It is designed to transmit torque (by connecting 2 shafts) while damping system vibrations and accommodating misalignment, which protects other components from damage. Jaw couplings are composed of 3 parts: 2 metallic hubs and an elastomer insert called an element, but commonly referred to as a “spider”. The 3 parts press fit together with a jaw from each hub fitted alternately with the lobes of the spider. Jaw coupling torque is transmitted through the elastomer lobes in compression.

The elastomer of the spider can be made in different materials and hardness, which allows the user to customize the coupling to best serve their application. Considerations for elastomer selection include ability to dampen vibration, ability to handle misalignment, operational temperature range, speed of equipment, and chemical conditions.

Features:
1.For heavy machinery;

2.Easy assblemly;

3.Cut off power when installation;

4.Can replace elastomer/spider withour moving driving and driven equipment.

Parameters:

Characteristics:
Flower-shaped elastic coupling has simple structure, small radial size, light weight and small moment of inertia. In medium and high speed applications, the plum-shaped elastic coupling works stably and reliably, and has good vibration damping, cushioning and electrical insulation properties. Plum-shaped elastic coupling has large axial, radial and angular compensation ability. High-strength polyurethane elastic components of plum-shaped elastic coupling are wear-resistant and oil-resistant, with large bearing capacity, long service life, safe and reliable, and coupling. No lubrication, no maintenance, continuous operation for a long time.

Plum-shaped flexible couplings are mainly suitable for starting, frequent reversing, medium and high speed, medium torque and high reliability requirements, such as metallurgy, mining, petroleum, chemical, lifting, transportation, light industry, textile, Pumps, fans, etc. Working environment temperature -35 ° C ~ +80 ° C, the transmission of nominal torque 25 ~ 12500Nm, the allowable speed of 1500 ~ 15300r / min.

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

spider coupling

Are there any industry standards or guidelines for designing and using spider couplings?

Yes, there are industry standards and guidelines that provide recommendations for designing, selecting, and using spider couplings in various mechanical systems. These standards help ensure the safe and reliable operation of spider couplings in industrial applications. Some of the relevant standards include:

  • AGMA 9002-B15: This American Gear Manufacturers Association (AGMA) standard provides guidelines for the selection and application of flexible couplings, including spider couplings. It covers topics such as coupling types, misalignment, torque capacity, and lubrication.
  • ISO 14691: This International Organization for Standardization (ISO) standard specifies methods for testing the torsional stiffness of flexible couplings, including spider couplings. It outlines procedures for determining the dynamic torsional stiffness and related parameters.
  • API 671: This American Petroleum Institute (API) standard provides guidelines for special-purpose couplings used in petroleum, chemical, and gas industry services. It covers design, manufacturing, inspection, and testing requirements for couplings, including those with elastomeric elements.

While these standards offer valuable insights, it’s important to note that specific industry requirements and applications may influence the design and selection of spider couplings. Manufacturers, engineers, and designers should also consider factors such as torque, misalignment compensation, environment, and system dynamics when applying these standards to their designs. Adhering to industry standards ensures that spider couplings are properly designed, installed, and used to meet the intended performance and safety criteria.

spider coupling

What are the best practices for ensuring proper lubrication of spider couplings?

Proper lubrication is essential for maintaining the performance and lifespan of spider couplings. Here are some best practices to ensure proper lubrication:

  • Use the Right Lubricant: Select a lubricant that is recommended by the coupling manufacturer. The lubricant should be compatible with the elastomeric spider material and the operating conditions of the machinery.
  • Follow Manufacturer’s Guidelines: Adhere to the lubrication schedule and guidelines provided by the manufacturer. They will specify the appropriate lubrication intervals and the quantity of lubricant to be applied.
  • Clean the Components: Before applying lubricant, make sure the coupling components are clean and free of dirt, debris, and old lubricant residues. Cleaning the components prevents contamination of the new lubricant.
  • Apply Lubricant Evenly: Apply the lubricant evenly on all contact surfaces of the elastomeric spider and the coupling hub. Avoid over-lubrication, which can lead to excess buildup and potential slippage.
  • Use Lubrication Tools: Some couplings may have lubrication ports or fittings that facilitate the application of lubricant. If such features are present, use the appropriate lubrication tools to ensure thorough coverage.
  • Operate Coupling After Lubrication: After applying lubricant, operate the coupling for a short period to ensure that the lubricant is evenly distributed across the contact surfaces. This helps in preventing dry spots and optimizing lubrication effectiveness.
  • Monitor Lubricant Condition: Regularly inspect the condition of the lubricant during routine maintenance checks. If you notice signs of contamination, degradation, or insufficient lubrication, take corrective actions promptly.
  • Consider Operating Conditions: Environmental factors such as temperature, humidity, and exposure to chemicals can affect the performance of lubricants. Choose a lubricant that can withstand the specific operating conditions of the machinery.
  • Document Lubrication Activities: Keep a record of lubrication activities, including the type of lubricant used, lubrication intervals, and the results of lubrication checks. This documentation helps track the history of lubrication and informs future maintenance decisions.

By following these best practices for lubrication, you can ensure that the elastomeric spider remains properly lubricated, reducing friction, wear, and the potential for premature coupling failure.

spider coupling

What factors should be considered when selecting a spider coupling for a specific application?

Choosing the right spider coupling for a specific application requires careful consideration of various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Torque Requirements: Determine the torque that the coupling needs to transmit between the shafts. Select a spider coupling that can handle the required torque without exceeding its limitations.
  • Misalignment Compensation: Assess the type and degree of misalignment that the coupling needs to accommodate. Different spider coupling designs offer varying levels of misalignment compensation.
  • Operating Conditions: Consider the operating environment, including temperature, humidity, and exposure to chemicals or contaminants. Choose a spider coupling with elastomeric material that can withstand these conditions.
  • Shaft Diameters: Measure the diameters of the connected shafts. Ensure that the selected spider coupling matches the shaft sizes to achieve a secure and reliable fit.
  • Space Limitations: Evaluate the available space for installing the coupling. Choose a compact spider coupling design that fits within the available dimensions.
  • Shaft Speed: Determine the rotational speed of the shafts. Ensure that the selected spider coupling can handle the speed range without causing excessive wear or vibrations.
  • Vibration Dampening: If vibration reduction is a priority, select a spider coupling with elastomeric material that offers effective vibration dampening properties.
  • Electrical Isolation: In applications where electrical isolation is necessary, choose a spider coupling with electrically insulating properties to prevent current transmission between shafts.
  • Chemical Compatibility: If the machinery operates with specific chemicals or fluids, ensure that the elastomeric material of the coupling is compatible with these substances.
  • Cost Consideration: Evaluate the budget available for the coupling. Consider both the upfront cost and the potential savings from reduced maintenance and downtime.
  • Manufacturer Reputation: Choose spider couplings from reputable manufacturers known for producing high-quality and reliable products.
  • Application Type: Different industries and applications have unique requirements. Consider the specific demands of the application, such as pumps, compressors, conveyors, etc.

By carefully evaluating these factors, you can select a spider coupling that best matches the requirements of your application, ensuring efficient power transmission, misalignment compensation, and overall system performance.

China high quality High Quality High Precision Ml Elastic Flexible Curved Jaw Rubber Spiders Shaft Coupling for Pump  China high quality High Quality High Precision Ml Elastic Flexible Curved Jaw Rubber Spiders Shaft Coupling for Pump
editor by CX 2024-05-16

China OEM High Quality HRC Coupling with Spider

Product Description

HRC Coupling With Spider, HRC flexible coupling, HRC Coupling, HRC Shaft Coupling
1. Installation: Is quick and easy without special tolls, only a hexagon wrench is required.
2. Maintenance: Is virtually eliminated and no lubricant is required
3. Environment: The elastomeric element mades HRC suitable for use in most conditions.
4. Material: Cast iron
5. Size: HRC70, HRC90, HRC110, HRC130, HRC150, HRC180, HRC230, HRC280.
6. Type: B flange, F flange, H flange. We are professinal manufacturer for various couplings. With good quality and best price.
We can also supply other types coupling as below:
NM: 50-214
MH: 55-230
L: 35-150
CL: 90-225
HRC: 70-280
FCL: 90-280
GE coupling: 19-90
Bowex coupling: 14-65

We can also supply chain coupling, roller chain coupling, rigid couplings, flexible couplings, fcl coupling, flexible rubber fcl coupling, fcl flexible coupling, forged steel fcl coupling, flexible coupling fcl, fcl flexible shaft coupling, jaw coupling, hrc coupling, CHINAMFG coupling, cast steel coupling, aluminum coupling, stainless steel coupling, pin coupling, mh coupling, nm coupling, spacer coupling, taper lock rigid coupling, flange coupling, sleeve coupling, nylon sleeve gear coupling, gear coupling, crc coupling, js coupling

Competitive Advantage:
More than 20 years advanced technology and experience of us will give strong support for the coupling you need. We will understand your need of product quickly, and give quick respond and good service. A lot of cases of our products will show you that it worth your trust.
Under the full quality control system, our products go through the precise product line and strict testing process. We have excellent working flow and standard to ensure stability, products reliable enough for using.
Take our scale economy, raw material superiority, and CHINAMFG for clients to account, our price do have a great competitiveness. They are good value and cost effective than your imagine.
We sincerely hope establishing long and friendly business relations with clients from all over the world. Our goal is not just providing product, but also providing a complete solution including product design, tooling, fabrication and service for our customers to achieve their upmost satisfaction.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

spider coupling

Can a spider coupling handle high levels of torque and angular misalignment?

Yes, a spider coupling is designed to handle a range of torque levels and accommodate angular misalignment. The elastomeric spider element, which is a key component of the coupling, provides the flexibility needed to transmit torque and compensate for misalignment. Here’s how a spider coupling handles these factors:

  • High Torque: Spider couplings are engineered to transmit torque efficiently. The elastomeric spider deforms slightly under torque load, allowing it to transfer power between the shafts. The specific torque capacity depends on the design, materials, and size of the coupling. High-performance spider couplings can handle significant torque loads, making them suitable for various industrial applications.
  • Angular Misalignment: Spider couplings can accommodate angular misalignment between the connected shafts. The elastomeric spider can flex in different directions, allowing for a certain degree of angular deviation between the shafts. This flexibility helps prevent excessive stress on the shafts and components, enhancing the coupling’s lifespan and reliability.

However, it’s important to note that while spider couplings can handle a range of torque levels and angular misalignment, there are limitations to how much misalignment they can compensate for. Excessive misalignment can lead to premature wear and reduced coupling performance. It’s recommended to follow the manufacturer’s guidelines for allowable misalignment and torque capacity to ensure optimal coupling performance and longevity.

spider coupling

Can you explain the concept of torsional stiffness in relation to spider couplings?

Torsional stiffness is a crucial concept in the design and functionality of spider couplings. It refers to the ability of a coupling to resist rotational deformation (twisting) when subjected to a torque load. In other words, torsional stiffness measures how much a coupling can maintain its shape and transmit torque without excessive twisting or deformation.

In the context of spider couplings:

  • High Torsional Stiffness: A coupling with high torsional stiffness exhibits minimal angular deflection or twisting when torque is applied. This ensures accurate torque transmission and precise alignment between connected shafts. High torsional stiffness is especially important in applications that require accurate positioning and synchronization.
  • Low Torsional Stiffness: A coupling with low torsional stiffness allows for some degree of angular misalignment between shafts and can accommodate slight variations in torque load. This flexibility can be advantageous in applications where misalignment or shock absorption is necessary.

When selecting a spider coupling for a specific application, the torsional stiffness of the coupling needs to be considered based on the requirements of the machinery system. The choice between high and low torsional stiffness depends on factors such as the level of precision needed, the type of load, the degree of misalignment, and the overall performance objectives.

It’s important to note that while torsional stiffness is a key consideration, other factors like the material of the elastomeric spider, size of the coupling, and the type of spider profile also play a role in the coupling’s overall performance and behavior.

spider coupling

What factors should be considered when selecting a spider coupling for a specific application?

Choosing the right spider coupling for a specific application requires careful consideration of various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Torque Requirements: Determine the torque that the coupling needs to transmit between the shafts. Select a spider coupling that can handle the required torque without exceeding its limitations.
  • Misalignment Compensation: Assess the type and degree of misalignment that the coupling needs to accommodate. Different spider coupling designs offer varying levels of misalignment compensation.
  • Operating Conditions: Consider the operating environment, including temperature, humidity, and exposure to chemicals or contaminants. Choose a spider coupling with elastomeric material that can withstand these conditions.
  • Shaft Diameters: Measure the diameters of the connected shafts. Ensure that the selected spider coupling matches the shaft sizes to achieve a secure and reliable fit.
  • Space Limitations: Evaluate the available space for installing the coupling. Choose a compact spider coupling design that fits within the available dimensions.
  • Shaft Speed: Determine the rotational speed of the shafts. Ensure that the selected spider coupling can handle the speed range without causing excessive wear or vibrations.
  • Vibration Dampening: If vibration reduction is a priority, select a spider coupling with elastomeric material that offers effective vibration dampening properties.
  • Electrical Isolation: In applications where electrical isolation is necessary, choose a spider coupling with electrically insulating properties to prevent current transmission between shafts.
  • Chemical Compatibility: If the machinery operates with specific chemicals or fluids, ensure that the elastomeric material of the coupling is compatible with these substances.
  • Cost Consideration: Evaluate the budget available for the coupling. Consider both the upfront cost and the potential savings from reduced maintenance and downtime.
  • Manufacturer Reputation: Choose spider couplings from reputable manufacturers known for producing high-quality and reliable products.
  • Application Type: Different industries and applications have unique requirements. Consider the specific demands of the application, such as pumps, compressors, conveyors, etc.

By carefully evaluating these factors, you can select a spider coupling that best matches the requirements of your application, ensuring efficient power transmission, misalignment compensation, and overall system performance.

China OEM High Quality HRC Coupling with Spider  China OEM High Quality HRC Coupling with Spider
editor by CX 2024-05-16

China factory CHINAMFG HRC Jaw Coupling Flexible Shaft Coupling Elastic Spider Type Coupling

Product Description

Rotex HRC Plum Coupling Flexible Shaft Coupling Elastic Spider Jaw type Coupling 
Material Cast Iron/Stainless Steel Flange,Rubber Spider
Model NO. HRC70 HRC90 HRC110 HRC130 HRC150 HRC180 HRC230 HRC280
Surface Treatment Phosphated
Bore Type Pilot Bore,Taper bore
Packing Carton Box,Plastic Bag,Wooden Case,Pallet

Features
1.Installation is quick and easy without special tools required, only a hexagonal wrench is needed.
2.Maintenance is virtually eliminated without lubrication required.
3.The electro metric element allows HRC to be suitable for use in most conditions.
4.In the unlikely event of the flexible element being destroyed, drive will be maintained by inner action of the integrally cast driving dogs.

Our Advantages
The HRC shaft couplings is widely used. Its characteristic is simple construction, safe and reliable in use and easy to install. Maintenance is virtually elimated and no lubricant is required in the running term. These couplings are made of GG25 high grade cast iron and phosphate for the surface to ensure strength for safe running under rated conditions.
A variety of HRC Drive Couplings and Jaw Couplings are currently available from MIGHTY. MIGHTY carries an assortment of high quality couplings, mainly HRC Drive Couplings and Jaw Couplings. If you are in need of a reliable coupling, our HRC Drive Couplings should serve your needs well. Composed of 2 halves with a star-shaped rubber unit in the centre, these couplings can fit whatever the situation calls for. They’re quite easy to use and install, shipped bored or custom bored when required. The HRC drive coupling that we carry also comes in 3 styles: F-type couplings where the taperlock bush can be inserted from the inside, H-type couplings where the taperlock bush can be inserted from the outside and B-type couplings which are pilot bored and ready to be machined to the required bore.

Packing&Shipping

Package  Standard suitable package / Pallet or container.
 Polybag inside export carton outside, blister and Tape and reel package available.
 If customers have specific requirements for the packaging, we will gladly accommodate.
Shipping

 10-20working days ofter payment receipt comfirmed (based on actual quantity).
 Packing standard export packing or according to customers demand.   

 Professional goods shipping forward.

About MIGHTY

ZheJiang Mighty Machinery Co., Ltd. specializes in manufacturing Mechanical Power Transmission Products.We Mighty is the division/branch of SCMC Group, which is a wholly state-owned company, established in 1980.
About Mighty:
-3 manufacturing factories, we have 5 technical staff, our FTY have strong capacity for design and process design, and more than 70 workers and double shift eveyday.
-Large quality of various material purchase and stock in warhouse which ensure the low cost for the material and production in
time.
-Strick quality control are apply in the whole production. 
we have incoming inspection,process inspection and final production inspection which can ensure the perfect of the goods quality.
-14 years of machining experience. Long time cooperate with the Global Buyer, make us easy to understand the csutomer and handle the export. MIGHTY’s products are mainly exported to Europe, America and the Middle East market. With the top-ranking management, professional technical support and abundant export experience, MIGHTY has established lasting and stable business partnership with many world famous companies and has got good reputation from CHINAMFG customers in international sales.

FAQ
Q: Are you trading company or manufacturer?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit. To supply customers excellent quality products with good price and punctual delivery time is our responsibility.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

spider coupling

What materials are typically used in manufacturing spider couplings and why?

Spider couplings are constructed using a combination of materials to achieve durability, flexibility, and efficient torque transmission. The choice of materials depends on factors such as application requirements, environmental conditions, and the desired balance between strength and flexibility. Common materials used in manufacturing spider couplings include:

  • Aluminum: Aluminum is lightweight and corrosion-resistant, making it suitable for applications where weight reduction is important. It offers good mechanical properties and can be used in various industries.
  • Steel: Steel provides excellent strength and durability. It’s often used in heavy-duty applications where high torque transmission is required. Surface treatments can enhance corrosion resistance.
  • Stainless Steel: Stainless steel offers corrosion resistance in aggressive environments. It’s commonly used in industries such as food processing, pharmaceuticals, and chemical processing.
  • Cast Iron: Cast iron is known for its high compressive strength and wear resistance. It’s suitable for applications requiring robust construction and can handle high torque loads.
  • Plastic/Polymer: Certain polymers and plastics, such as polyurethane or nylon, are used for the elastomeric spider element. These materials provide flexibility, vibration dampening, and misalignment compensation.

The choice of materials depends on the specific requirements of the application. For example, aluminum or stainless steel may be chosen for industries requiring corrosion resistance, while steel or cast iron may be selected for heavy-duty applications. The elastomeric spider is typically made from a durable polymer to ensure flexibility and effective torque transmission while accommodating misalignment. Overall, selecting the right materials ensures that spider couplings can withstand the demands of the intended application and provide reliable performance over their lifespan.

spider coupling

Can you explain the concept of torsional stiffness in relation to spider couplings?

Torsional stiffness is a crucial concept in the design and functionality of spider couplings. It refers to the ability of a coupling to resist rotational deformation (twisting) when subjected to a torque load. In other words, torsional stiffness measures how much a coupling can maintain its shape and transmit torque without excessive twisting or deformation.

In the context of spider couplings:

  • High Torsional Stiffness: A coupling with high torsional stiffness exhibits minimal angular deflection or twisting when torque is applied. This ensures accurate torque transmission and precise alignment between connected shafts. High torsional stiffness is especially important in applications that require accurate positioning and synchronization.
  • Low Torsional Stiffness: A coupling with low torsional stiffness allows for some degree of angular misalignment between shafts and can accommodate slight variations in torque load. This flexibility can be advantageous in applications where misalignment or shock absorption is necessary.

When selecting a spider coupling for a specific application, the torsional stiffness of the coupling needs to be considered based on the requirements of the machinery system. The choice between high and low torsional stiffness depends on factors such as the level of precision needed, the type of load, the degree of misalignment, and the overall performance objectives.

It’s important to note that while torsional stiffness is a key consideration, other factors like the material of the elastomeric spider, size of the coupling, and the type of spider profile also play a role in the coupling’s overall performance and behavior.

spider coupling

What is a spider coupling and how is it used in mechanical systems?

A spider coupling, also known as a jaw coupling or elastomeric coupling, is a type of flexible coupling used to connect two shafts while accommodating misalignment and transmitting torque between them. It consists of three main components: two hubs and an elastomeric spider or insert that fits between them.

The elastomeric spider is typically made of a flexible and durable material, such as rubber or polyurethane, with a series of lobes or fins that fit into matching grooves on the inner surfaces of the hubs. These lobes allow the spider to flex and absorb misalignments between the connected shafts while transmitting torque.

The spider coupling is used in mechanical systems to:

  • Transmit Torque: The primary function of a spider coupling is to transmit torque from one shaft to another. As the shafts rotate, the elastomeric spider deforms slightly, allowing the hubs to move relative to each other while maintaining torque transmission.
  • Accommodate Misalignment: Spider couplings can accommodate different types of misalignment, including angular, axial, and parallel misalignments, without causing excessive stress on the connected components. This flexibility helps prevent premature wear and failure.
  • Dampen Vibrations: The elastomeric material of the spider acts as a shock absorber, dampening vibrations and reducing the transmission of vibrations between the connected shafts. This can improve overall system performance and reduce wear on components.
  • Isolate Shock Loads: In applications with sudden changes in torque or shock loads, the spider coupling can absorb and dampen these shocks, protecting the connected components from damage.
  • Reduce Maintenance: Spider couplings require minimal maintenance due to their simple design and absence of lubrication points. This can lead to reduced downtime and maintenance costs in industrial machinery.
  • Provide Electric Insulation: Spider couplings can provide electrical isolation between the connected shafts, making them suitable for applications where electrical grounding needs to be minimized.

Spider couplings are commonly used in various machinery and equipment, such as pumps, compressors, conveyors, fans, and industrial machinery. They are particularly well-suited for applications that require flexibility, misalignment compensation, vibration reduction, and ease of maintenance.

China factory CHINAMFG HRC Jaw Coupling Flexible Shaft Coupling Elastic Spider Type Coupling  China factory CHINAMFG HRC Jaw Coupling Flexible Shaft Coupling Elastic Spider Type Coupling
editor by CX 2024-05-15

China Hot selling CHINAMFG Lm Type Spider Couplings Small Radial Size No Lubrication Jaw Plum Coupling

Product Description

LM Basic Type Plum Elastic Coupling(GB/T 5272-2002) 

Product Description

 

♦Description
Plum elastic coupling has the characteristics of vibration reduction, buffering, small radial size, no lubrication and easy maintenance. Suitable for starting frequency, positive and negative rotation, medium and low speed, medium and small power transmission.Not suitable for heavy loads and frequent replacement of elastic elements.
The structure of plum elastic coupling is simple. But when the elastic element is replaced, the half coupling shall be moved axially.LMS type is easy to replace the elastic element without having to move the half coupling.

♦Detailed Pictures

Basic Parameter and Main Dimension

Type Norminal torque(Tn/N·m) Speed(Np) Shaft hole diameter
(d1,d2,dz)
Length of shaft hole LO D D1 Type of elastic parts Mass Rotary inertia
Hardness of elastic parts LM LMD,LMS Y type J1,Z type L
(recommend)
LM LMD LMS LMD,LMS LM LMD LMS LM LMD LMS
a/HA b/HD L
80+5 60+5 r·min-1 Mm kg kg·m2
LM1
LMD1
LMS1
25 45 15300 8500 12,14 32 27 35 86 92 98 50 90 MT1-a  -b 0.66 1.21 1.33 0.0002 0.0008 0.0013
16,18,19 42 30
20,22,24 52 38
25 62 44
LM2
LMD2
LMS2
50 100 1200 7600 16,18,19 42 30 38 95 101.5 108 60 100 MT2-a  -b 0.93 1.65 1.74 0.0004 0.0014 0.0571
20,22,24 52 38
25,28 62 44
30 82 60
LM3
LMD3
LMS3
100 200 10900
 
6900 20,22,24 52 38 40 103 110 117 70 110 MT3-a  -b 1.41 2.36 2.33 0.0009 0.0571 0.0034
25,28 62 44
30,32 82 60
LM4
LMD4
LMS4
140 280 9000
 
6200 22,24 52 38 45 114 122 130 85 125 MT4-a  -b 2.18 3.56 3.38 0.002 0.005 0.0064
25,28 62 44
30,32,35,38 82 60
40 112 84
LM5
LMD5
LMS5
350 400 7300
 
5000 25,28 62 44 50 127 138.5 150 105 150 MT5-a  -b 3.60 6.36 6.07 0.005 0.0135 0.0175
30,32,35,38 82 60
40,42,45 112 84
LM6
LMD6
LMS6
400 710 6100
 
4100 30,32,35,38 82 60 55 143 155 167 185 185 MT6-a  -b 6.07 10.77 10.47 0.0114 0.0329 0.0444
40,42,45,48 112 84
LM7
LMD7
LMS7
630 1120 5300 3700 35*,38* 82 60 60 159 172 185 205 205 MT7-a  -b 9.09 15.30 14.22 0.5712 0.0581 0.571
40*,42*,45,48,50,55 112 84
LM8
LMD8
LMS8
1120 2240 4500 3100 45*,48*,50,55,56 112 84 70 181 195 209 170 240 MT8-a  -b 13.56 22.72 21.16 0. 0571 0.1175 0.1493
60,63,65 142 107
LM9
LMD9
LMS9
1800 3550 3800 2800 50*,55*,56* 112 84 80 208 224 240 200 270 MT9-a  -b 21.40 34.44 30.70 0.1041 0.2333 0.2767
60,63,65,70,71,75 142 107
80 172 132
LM10
LMD10
LMS10
2800 5600 3300 2500 60*,63*,65*,70,71,75 142 107 90 230 248 268 230 305 MT10-a  -b 32.03 51.36 44.55 0.2105 0.4594 0.5262
80,85,90,95 172 132
100 212 167
LM11
LMD11
LMS11
4500 9000 2900 2200 71*,71*,75* 142 107 100 260 284 308 260 350 MT11-a  -b 49.52 81.30 70.72 0.4338 0.9777 1.1362
80*,85*,90,95 172 132
100,110,120 212 167
LM12
LMD12
LMS12
6300 12500 2500 1900 80*,85*,90*95 172 132 115 297 321 345 300 400 MT12-a  -b 73.45 115.53 99.54 0.8205 1.751 1.9998
100,110,120,125 212 167
130,140,150 252 202
LM13
LMD13
LMS13
11200 2000 2100 1600 90*,95* 172 132 125 323 348 373 360 460 MT13-a  -b 103.86 161.79 137.53 1.6718 3.667 3.6719
100*,110*,120*,125* 212 167
130,140,150 252 202
LM14
LMD14
LMS14
12500 25000 1900 1500 100*,110*,120*,125* 212 167 135 333 358 383 400 500 MT14-a  -b 127.59 196.32 165.25 2.499 4.8669 5.1581
130*,140*,150 252 202
160 302 242

NOTE:
1. Mass and rotary inertia are the approximation calculated according to the recommended minimum axial hole.
2. Diameter of shaft hole with* can be used for Z type shaft hole.
3. a.b is the code for 2 different materials and hardness of elastic parts.

Other products

 

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

 

Company Profile

 

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 26 employees in our company, including 2 senior engineers and no fewer than 10 mechanical design and manufacture, heat treatment, welding, and other professionals.

Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.

Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

Our service

 

1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing→ Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop the new model when there is new cardan in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.
 

FAQ

 

Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3: How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have a very good price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T.  
 

♦Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

spider coupling

What are the common challenges associated with spider coupling misalignment and how can they be addressed?

Misalignment is a common challenge in spider couplings that can lead to reduced efficiency, increased wear, and potential coupling failure. Here are the common challenges associated with misalignment and how they can be addressed:

  • Reduced Torque Transmission: Misalignment can decrease the effective torque transmitted between the shafts, leading to inefficiency and potential overload. Regularly check and align the shafts according to the manufacturer’s recommendations to ensure proper torque transmission.
  • Vibration and Noise: Misalignment can cause excessive vibrations and noise in the machinery. Implement precision alignment techniques during installation to minimize misalignment-induced vibrations and noise.
  • Increased Wear: Misalignment results in uneven loading on the elastomeric spider, causing premature wear and potential failure. Regularly inspect the coupling for signs of wear and replace the elastomeric spider if necessary. Address misalignment promptly to prevent excessive wear.
  • Heat Generation: Misalignment can generate heat due to friction between the elastomeric spider and the hubs. This can lead to accelerated wear and reduced coupling lifespan. Proper alignment helps minimize heat generation and associated issues.
  • Shaft Fatigue: Severe misalignment can induce shaft fatigue and stress concentrations, leading to shaft failure over time. Avoid excessive misalignment and ensure that the coupling is properly aligned during installation.
  • Reduced Service Life: Misalignment puts additional stress on the elastomeric spider, reducing its service life. Proper alignment and maintenance practices can extend the service life of the coupling.
  • Performance Variations: Misalignment can lead to variations in performance and inconsistent operation of the machinery. Regularly monitor the coupling’s performance and address any issues promptly to ensure consistent operation.

To address these challenges, it’s crucial to prioritize precision alignment during the installation of the spider coupling. Follow the manufacturer’s guidelines for alignment tolerances and use alignment tools and techniques to achieve accurate alignment. Regular maintenance, including inspections and alignment checks, will help mitigate the negative effects of misalignment and ensure the reliable performance of spider couplings in industrial applications.

spider coupling

Can you explain the concept of torsional stiffness in relation to spider couplings?

Torsional stiffness is a crucial concept in the design and functionality of spider couplings. It refers to the ability of a coupling to resist rotational deformation (twisting) when subjected to a torque load. In other words, torsional stiffness measures how much a coupling can maintain its shape and transmit torque without excessive twisting or deformation.

In the context of spider couplings:

  • High Torsional Stiffness: A coupling with high torsional stiffness exhibits minimal angular deflection or twisting when torque is applied. This ensures accurate torque transmission and precise alignment between connected shafts. High torsional stiffness is especially important in applications that require accurate positioning and synchronization.
  • Low Torsional Stiffness: A coupling with low torsional stiffness allows for some degree of angular misalignment between shafts and can accommodate slight variations in torque load. This flexibility can be advantageous in applications where misalignment or shock absorption is necessary.

When selecting a spider coupling for a specific application, the torsional stiffness of the coupling needs to be considered based on the requirements of the machinery system. The choice between high and low torsional stiffness depends on factors such as the level of precision needed, the type of load, the degree of misalignment, and the overall performance objectives.

It’s important to note that while torsional stiffness is a key consideration, other factors like the material of the elastomeric spider, size of the coupling, and the type of spider profile also play a role in the coupling’s overall performance and behavior.

spider coupling

What are the advantages of using a spider coupling in industrial applications?

Spider couplings offer several advantages that make them a popular choice for various industrial applications. Here are the key advantages:

  • Misalignment Compensation: Spider couplings can accommodate angular, axial, and parallel misalignments between connected shafts. This ability to compensate for misalignment reduces stress on components and extends equipment lifespan.
  • Flexibility: The elastomeric spider provides flexibility that allows for slight movements between the shafts. This flexibility helps prevent excessive wear, reduces vibration transmission, and minimizes the risk of component failure.
  • Vibration Dampening: The elastomeric material of the spider acts as a shock absorber, dampening vibrations generated by rotating machinery. This can lead to improved equipment performance, reduced noise, and enhanced operator comfort.
  • Easy Installation: Spider couplings have a simple design with minimal components, making them easy to install and replace. Their design eliminates the need for precise alignment during installation, saving time and effort.
  • Torque Transmission: Spider couplings efficiently transmit torque from one shaft to another, ensuring that power is effectively transferred between connected components.
  • Minimal Maintenance: Spider couplings require minimal maintenance due to their self-lubricating and wear-resistant elastomeric material. This reduces downtime and maintenance costs for industrial machinery.
  • Compact Design: Spider couplings have a compact and lightweight design, making them suitable for applications where space is limited. Their small size allows for easy integration into various systems.
  • Cost-Effective: Spider couplings are relatively inexpensive compared to other coupling types, making them a cost-effective solution for a wide range of industrial applications.
  • Electric Insulation: In applications where electrical isolation is important, spider couplings made from electrically insulating materials can prevent the transmission of electrical currents between shafts.
  • Wide Range of Sizes: Spider couplings are available in various sizes and configurations to accommodate different shaft diameters and torque requirements.

Due to these advantages, spider couplings are commonly used in industries such as manufacturing, automation, packaging, material handling, and more, where flexibility, misalignment compensation, and efficient torque transmission are essential for optimal equipment performance.

China Hot selling CHINAMFG Lm Type Spider Couplings Small Radial Size No Lubrication Jaw Plum Coupling  China Hot selling CHINAMFG Lm Type Spider Couplings Small Radial Size No Lubrication Jaw Plum Coupling
editor by CX 2024-05-15

China Hot selling T40 – T210 Sbt Elastic Spider, Sbt Polyurethane Coupling, SBR Spider Coupling for Jaw Coupling (3A2006)

Product Description

T40 – T210 SBT Elastic Spider, SBT Polyurethane Coupling, SBR Spider Coupling for Jaw Coupling (3A2006)

 
SBT Type elastic spider is suitable to water pumps and mechnical cushinoning effect to joint of transmission shaft.
 
Advabtages:
1. Extremely resistant to wear, oil, CHINAMFG and ageing. Also resistant to hydrolysis (ideal for tropical climates)
2. Protect the drive against dynamic overload.
3. Good physical properties.
4. Easy installation .
5. OEM
 
Technical Data
Operating conditions
Temperature: -40~+100°C
Torque:  22.4-2500NM
 
Material
Material: NBR, CPU/TPU
Hardness: 70, 90, 95, 98 Shore A
 
 

Specifications:  
product advantage 1. Widely used in all kinds of water pumps
  2. Easy installation
Material composition TPU, NBR
Working Temperature -30ºC~+100ºC
Product hardness(shore A) TPU:90, 95, 98+-2shore A, NBR:70+/-5shore A
Torque 22.4-2500NM
Size any regular size or based on customer request
Color black or natural
Logo Yierka or customer logo is available
working midea water, oil
OEM&ODM welcome
Sample lead time Within 7 days
Production lead time 15 days or as per customers’ order quantity
Ship menthods by ocean/air or express is okay
Delivery port HangZhou, ZheJiang or ZheJiang
Payment terms 1.T/T 2. L/C 3. Western Union
Our Advantage: 1.nearly 10 years manufacturing experience
skilled workers, technology are abuntant.
 
2.In 1991,we cooperate with Chinese Academy of Science conducting the cooperation for seal technology applying in the mine, hydraulic and pneumatic system and engineering system.

 

Normal Size
part number ID(mm) OD(mm) H(mm)
SBT-40 18 40 10
SBT-45 20 45 10
SBT-56 27 56 15
SBT-62 30 62 15
SBT-65 30 65 15
SBT-75 35 75 15
SBT-79 40 79 15
SBT-90 45 90 18
SBT-94 45 94 18
SBT-104 55 104 23
SBT-108 55 108 24
SBT-126 60 126 28
SBT-133 60 133 25
SBT-154 79 154 27
SBT-170 80 170 28
SBT-175 85 175 30
SBT-180 90 180 30
SBT-200 100 200 36

 
 
 

Description: the polyurethane elastomeric is a new material of polymer synthetic between rubber and plastic. It has both high strength of plastic and high elasticity of rubber. Its characteristics are: 1, a wide range of hardness. It still has rubber elongation and resilience at high hardness. The polyurethane elastomeric has a hardness range of Shore A10-D80. 2. high strength. At rubber hardness, the tensile strength, tear strength and load carrying capacity are much higher than general rubber material. At high hardness, its impact strength and flexural strength are much higher than plastic material. 3, wear-resistant. Its wear resistance is very outstanding, generally in the range of 0.01-0.10cm3/1.61km, about 3-5 times than rubber material. 4, oil resistant. The polyurethane elastomeric is a highly CHINAMFG polymer compound which has low affinity with non-polar mineral oil and is hardly eroded in fuel oil and mechanical oil. 5, good resistance to oxygen and ozone. 6, excellent vibration absorption performance, can do damping and buffering. In the mold manufacturing industry, it replaces rubber and springs.7, has good low temperature performance. 8, radiation resistance. Polyurethane is highly resistant to high energy radiation and has satisfactory performance at 10-10 deg radiation dose. 9, with good machining performance.

 

The polyurethane coupling, rubber coupling are made by injection with high quality TPU material or mould CSM/SBR. It is designing and special for all kinds of metal shaft coupling with very good performance of high tensile strength, high wear resistant, high elastic resilience, water resistant, oil resistant and excellent fatigue resilience, high impact resistant etc. We have full sets injection moulds and supply full range of GR, GS, MT, ML, MH, Hb, HRC, L, T, NM and Gear J series couplings etc. with high quality and excellent experience. Apply to all kinds of industrial metal shaft coupling.

 

Specifications:

material: TPU, CSM/SBR, NBR, nylon etc.

color: yellow, red, purple, green, black, beige etc.

surface: smooth

tensile strength: 8-55Mpa

hardness: 70-98Shore A

elongation: 400%-650%

density: 1.25g/cm3

elasticity impact: >25%

tear strength: 35-155KN/m

akron abrasion loss:<0.05cm3/1.61km

compression set (22h*70°C):<10%

working temperature: 120°C

standard size for polyurethane coupling: 

GR14, GR19, GR24, GR28, GR38, GR42, GR48, GR55, GR65, GR75, GR90, GR100, GR110, GR125, GR140, GR160, GR180

GS5, GS7, GS9, GS12, GS14, GS19, GS24, GS28, GS38, GS42, GS48, GS550, GS65, GS75

MT1, MT2, MT3, MT4, MT5, MT6, MT7, MT8, MT9, MT10, MT11, MT12, MT13

ML1, ML2, ML3, ML4, ML5, ML6, ML7, ML8, ML9, ML10, ML11, ML12, ML13

MH45, MH55, MH65, MH80, MH90, MH115, MH130, MH145, MH175, MH200

HRC70, HRC90, HRC110, HRC130, HRC150, HRC180, HRC230, HRC280

L35, L50, L70, L75, L90/95, L99/100, L110, L150, L190, L225, L276

FALK-R 10R, 20R, 30R, 40R, 50R, 60R, 70R, 80R

SBT T40, T45, T50, T55, T60, T65, T70, T75, T80, T85, T90, T95, T100, T105, T108, T110, T115, T120, T125, T130, T135, T140, T145, T150, T154, T170, T185, T190, T210

Joong Ang CR0050, 0070, 571, 571, 2035, 2035A, 3545, 4560, 6070, 7080

MS571, MS571, MS1119, MS1424, MS1928, MS1938, MS2845, MS3860, MS4275, MS6510

D14, D14L, D20, D25, D30, D30L, D35, D40, D45, D49, D55, D65

5H, 6H, 7H, 8H, 9H, 10H, 11H

 

standard size for rubber coupling:

Hb80, Hb95, Hb110, Hb125, Hb140, Hb160, Hb180, Hb200, Hb240, Hb280, Hb315

HRC70, HRC90, HRC110, HRC130, HRC150, HRC180, HRC230, HRC280

L35, L50, L70, L75, L90/95, L99/100, L110, L150, L190, L225

NM50, NM67, NM82, NM97, NM112, NM128, NM148, NM168, NM194, NM214, NM240, NM265

NOR-MEX168-10, NOR-MEX194-10, NOR-MEX214-10, NOR-MEX240-10, NOR-MEX265-10

FCL1#, FCL2#, FCL3#, FCL4#, FCL5#, FCL6#, FCL7#, FCL8#

FCL90, FCL100, FCL112, FCL125, FCL140, FCL160, FCL180, FCL200, FCL224, FCL250, FCL280, FCL315, FCL335, FCL400, FCL450, FCL560, FCL630

Gear 3J, 4J, 5J, 6J, 7J, 8J, 9J, 10J, 11J, 12J, 13J, 14J

Hytre 4H, 5H, 6H, 7H, 8H, 9H, 11H

Tyre F40, F50, F60, F70, F80, F90, F100, F110, F120, F140, F160 

SBT T75, T80, T85, T90, T95, T100, T105, T108, T110, T115, T120, T125, T130, T135, T140, T145, T150, T154, T170, T210

FCLpin #1, #2, #3, #4, #5, #6, #8

GR42, GR48, GR55, GR65, GR75

DL1, DL2, DL3, DL4, DL5, DL6, DL7, DL8, DL9, DL10, DL11

 

standard size for nylon coupling:

NL1, NL2, NL3, NL4, NL5, NL6, NL7, NL8, NL9, NL10

M28, M32, M38, M42, M48, M58, M65

packing in bags, cartons, pallets or crates

OEM & customized size are agreed

special supply all kinds of steel coupling for FCL, NM, MH, HRC, Love Joy, Joongang, Centafelx, XL-GR, Tyre

***when you enquiry, pls confirm type, size number and quantity***

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

spider coupling

How does a spider coupling compare to other types of couplings, such as jaw couplings or gear couplings?

Spider couplings, jaw couplings, and gear couplings are all commonly used in mechanical systems for power transmission and misalignment compensation. Each type of coupling has its own unique characteristics and advantages. Here’s a comparison:

  • Spider Couplings: Spider couplings, also known as flexible couplings or jaw/spider couplings, use an elastomeric spider to transmit torque and accommodate misalignment. They are known for their flexibility, vibration dampening, and ability to handle angular, radial, and axial misalignment. Spider couplings are suitable for a wide range of applications and are cost-effective solutions for moderate torque requirements and misalignment compensation.
  • Jaw Couplings: Jaw couplings consist of two hubs with curved jaws that interlock and transmit torque. They are simple to install and provide a secure connection. However, jaw couplings are less effective in accommodating misalignment compared to spider couplings. They are suitable for applications with minimal misalignment and moderate torque transmission.
  • Gear Couplings: Gear couplings use toothed gears to transmit torque between shafts. They are robust and capable of transmitting high torque while accommodating some misalignment. Gear couplings are often used in heavy-duty applications that require precise torque transmission and can tolerate limited misalignment.

When comparing these couplings, spider couplings stand out for their versatility in handling various types of misalignment and providing vibration dampening. Jaw couplings are simpler and suitable for applications with minimal misalignment, while gear couplings excel in heavy-duty applications with high torque requirements. The choice between these couplings depends on the specific requirements of the application, including torque, misalignment compensation, space limitations, and cost considerations.

spider coupling

Are there any specific maintenance practices for ensuring the longevity of spider couplings?

Yes, implementing proper maintenance practices is crucial for ensuring the longevity and optimal performance of spider couplings. Here are some specific maintenance practices to consider:

  • Regular Inspections: Conduct routine visual inspections of the coupling to identify any signs of wear, damage, or misalignment. Regular inspections allow you to detect issues early and address them before they escalate.
  • Lubrication: Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant. Proper lubrication reduces friction, prevents excessive wear, and maintains coupling efficiency.
  • Alignment Checks: Ensure that the shafts connected by the coupling are properly aligned. Misalignment can accelerate wear and compromise coupling performance. Regular alignment checks are essential, especially after maintenance or changes in operating conditions.
  • Torque Checks: Periodically check the torque values of fasteners such as bolts, nuts, and screws that secure the coupling components. Proper torque ensures the coupling remains securely fastened.
  • Temperature Monitoring: Monitor the operating temperature of the coupling during normal operation. Abnormally high temperatures can indicate excessive friction and potential issues with the coupling.
  • Environmental Considerations: If the machinery is operating in harsh or corrosive environments, take appropriate measures to protect the coupling from contaminants, chemicals, and moisture.
  • Replacement of Elastomeric Spider: The elastomeric spider is a critical component of the coupling. Replace it if you notice signs of wear, cracks, tears, or deformation. Follow the manufacturer’s recommended replacement intervals.
  • Documentation: Maintain records of maintenance activities, inspections, and any repairs performed on the coupling. This documentation helps track the history of the coupling and informs future maintenance decisions.
  • Training and Education: Ensure that maintenance personnel are trained in proper coupling maintenance practices. This includes handling, installation, and lubrication procedures.

By adhering to these maintenance practices, you can extend the lifespan of spider couplings, reduce the likelihood of unexpected failures, and ensure the continued reliability of machinery systems.

spider coupling

What is a spider coupling and how is it used in mechanical systems?

A spider coupling, also known as a jaw coupling or elastomeric coupling, is a type of flexible coupling used to connect two shafts while accommodating misalignment and transmitting torque between them. It consists of three main components: two hubs and an elastomeric spider or insert that fits between them.

The elastomeric spider is typically made of a flexible and durable material, such as rubber or polyurethane, with a series of lobes or fins that fit into matching grooves on the inner surfaces of the hubs. These lobes allow the spider to flex and absorb misalignments between the connected shafts while transmitting torque.

The spider coupling is used in mechanical systems to:

  • Transmit Torque: The primary function of a spider coupling is to transmit torque from one shaft to another. As the shafts rotate, the elastomeric spider deforms slightly, allowing the hubs to move relative to each other while maintaining torque transmission.
  • Accommodate Misalignment: Spider couplings can accommodate different types of misalignment, including angular, axial, and parallel misalignments, without causing excessive stress on the connected components. This flexibility helps prevent premature wear and failure.
  • Dampen Vibrations: The elastomeric material of the spider acts as a shock absorber, dampening vibrations and reducing the transmission of vibrations between the connected shafts. This can improve overall system performance and reduce wear on components.
  • Isolate Shock Loads: In applications with sudden changes in torque or shock loads, the spider coupling can absorb and dampen these shocks, protecting the connected components from damage.
  • Reduce Maintenance: Spider couplings require minimal maintenance due to their simple design and absence of lubrication points. This can lead to reduced downtime and maintenance costs in industrial machinery.
  • Provide Electric Insulation: Spider couplings can provide electrical isolation between the connected shafts, making them suitable for applications where electrical grounding needs to be minimized.

Spider couplings are commonly used in various machinery and equipment, such as pumps, compressors, conveyors, fans, and industrial machinery. They are particularly well-suited for applications that require flexibility, misalignment compensation, vibration reduction, and ease of maintenance.

China Hot selling T40 - T210 Sbt Elastic Spider, Sbt Polyurethane Coupling, SBR Spider Coupling for Jaw Coupling (3A2006)  China Hot selling T40 - T210 Sbt Elastic Spider, Sbt Polyurethane Coupling, SBR Spider Coupling for Jaw Coupling (3A2006)
editor by CX 2024-05-14

China manufacturer High Quality HRC Coupling with Spider

Product Description

HRC Coupling With Spider, HRC flexible coupling, HRC Coupling, HRC Shaft Coupling
1. Installation: Is quick and easy without special tolls, only a hexagon wrench is required.
2. Maintenance: Is virtually eliminated and no lubricant is required
3. Environment: The elastomeric element mades HRC suitable for use in most conditions.
4. Material: Cast iron
5. Size: HRC70, HRC90, HRC110, HRC130, HRC150, HRC180, HRC230, HRC280.
6. Type: B flange, F flange, H flange. We are professinal manufacturer for various couplings. With good quality and best price.
We can also supply other types coupling as below:
NM: 50-214
MH: 55-230
L: 35-150
CL: 90-225
HRC: 70-280
FCL: 90-280
GE coupling: 19-90
Bowex coupling: 14-65

We can also supply chain coupling, roller chain coupling, rigid couplings, flexible couplings, fcl coupling, flexible rubber fcl coupling, fcl flexible coupling, forged steel fcl coupling, flexible coupling fcl, fcl flexible shaft coupling, jaw coupling, hrc coupling, CHINAMFG coupling, cast steel coupling, aluminum coupling, stainless steel coupling, pin coupling, mh coupling, nm coupling, spacer coupling, taper lock rigid coupling, flange coupling, sleeve coupling, nylon sleeve gear coupling, gear coupling, crc coupling, js coupling

Competitive Advantage:
More than 20 years advanced technology and experience of us will give strong support for the coupling you need. We will understand your need of product quickly, and give quick respond and good service. A lot of cases of our products will show you that it worth your trust.
Under the full quality control system, our products go through the precise product line and strict testing process. We have excellent working flow and standard to ensure stability, products reliable enough for using.
Take our scale economy, raw material superiority, and CHINAMFG for clients to account, our price do have a great competitiveness. They are good value and cost effective than your imagine.
We sincerely hope establishing long and friendly business relations with clients from all over the world. Our goal is not just providing product, but also providing a complete solution including product design, tooling, fabrication and service for our customers to achieve their upmost satisfaction.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

spider coupling

Are there any industry standards or guidelines for designing and using spider couplings?

Yes, there are industry standards and guidelines that provide recommendations for designing, selecting, and using spider couplings in various mechanical systems. These standards help ensure the safe and reliable operation of spider couplings in industrial applications. Some of the relevant standards include:

  • AGMA 9002-B15: This American Gear Manufacturers Association (AGMA) standard provides guidelines for the selection and application of flexible couplings, including spider couplings. It covers topics such as coupling types, misalignment, torque capacity, and lubrication.
  • ISO 14691: This International Organization for Standardization (ISO) standard specifies methods for testing the torsional stiffness of flexible couplings, including spider couplings. It outlines procedures for determining the dynamic torsional stiffness and related parameters.
  • API 671: This American Petroleum Institute (API) standard provides guidelines for special-purpose couplings used in petroleum, chemical, and gas industry services. It covers design, manufacturing, inspection, and testing requirements for couplings, including those with elastomeric elements.

While these standards offer valuable insights, it’s important to note that specific industry requirements and applications may influence the design and selection of spider couplings. Manufacturers, engineers, and designers should also consider factors such as torque, misalignment compensation, environment, and system dynamics when applying these standards to their designs. Adhering to industry standards ensures that spider couplings are properly designed, installed, and used to meet the intended performance and safety criteria.

spider coupling

What are the best practices for ensuring proper lubrication of spider couplings?

Proper lubrication is essential for maintaining the performance and lifespan of spider couplings. Here are some best practices to ensure proper lubrication:

  • Use the Right Lubricant: Select a lubricant that is recommended by the coupling manufacturer. The lubricant should be compatible with the elastomeric spider material and the operating conditions of the machinery.
  • Follow Manufacturer’s Guidelines: Adhere to the lubrication schedule and guidelines provided by the manufacturer. They will specify the appropriate lubrication intervals and the quantity of lubricant to be applied.
  • Clean the Components: Before applying lubricant, make sure the coupling components are clean and free of dirt, debris, and old lubricant residues. Cleaning the components prevents contamination of the new lubricant.
  • Apply Lubricant Evenly: Apply the lubricant evenly on all contact surfaces of the elastomeric spider and the coupling hub. Avoid over-lubrication, which can lead to excess buildup and potential slippage.
  • Use Lubrication Tools: Some couplings may have lubrication ports or fittings that facilitate the application of lubricant. If such features are present, use the appropriate lubrication tools to ensure thorough coverage.
  • Operate Coupling After Lubrication: After applying lubricant, operate the coupling for a short period to ensure that the lubricant is evenly distributed across the contact surfaces. This helps in preventing dry spots and optimizing lubrication effectiveness.
  • Monitor Lubricant Condition: Regularly inspect the condition of the lubricant during routine maintenance checks. If you notice signs of contamination, degradation, or insufficient lubrication, take corrective actions promptly.
  • Consider Operating Conditions: Environmental factors such as temperature, humidity, and exposure to chemicals can affect the performance of lubricants. Choose a lubricant that can withstand the specific operating conditions of the machinery.
  • Document Lubrication Activities: Keep a record of lubrication activities, including the type of lubricant used, lubrication intervals, and the results of lubrication checks. This documentation helps track the history of lubrication and informs future maintenance decisions.

By following these best practices for lubrication, you can ensure that the elastomeric spider remains properly lubricated, reducing friction, wear, and the potential for premature coupling failure.

spider coupling

What is a spider coupling and how is it used in mechanical systems?

A spider coupling, also known as a jaw coupling or elastomeric coupling, is a type of flexible coupling used to connect two shafts while accommodating misalignment and transmitting torque between them. It consists of three main components: two hubs and an elastomeric spider or insert that fits between them.

The elastomeric spider is typically made of a flexible and durable material, such as rubber or polyurethane, with a series of lobes or fins that fit into matching grooves on the inner surfaces of the hubs. These lobes allow the spider to flex and absorb misalignments between the connected shafts while transmitting torque.

The spider coupling is used in mechanical systems to:

  • Transmit Torque: The primary function of a spider coupling is to transmit torque from one shaft to another. As the shafts rotate, the elastomeric spider deforms slightly, allowing the hubs to move relative to each other while maintaining torque transmission.
  • Accommodate Misalignment: Spider couplings can accommodate different types of misalignment, including angular, axial, and parallel misalignments, without causing excessive stress on the connected components. This flexibility helps prevent premature wear and failure.
  • Dampen Vibrations: The elastomeric material of the spider acts as a shock absorber, dampening vibrations and reducing the transmission of vibrations between the connected shafts. This can improve overall system performance and reduce wear on components.
  • Isolate Shock Loads: In applications with sudden changes in torque or shock loads, the spider coupling can absorb and dampen these shocks, protecting the connected components from damage.
  • Reduce Maintenance: Spider couplings require minimal maintenance due to their simple design and absence of lubrication points. This can lead to reduced downtime and maintenance costs in industrial machinery.
  • Provide Electric Insulation: Spider couplings can provide electrical isolation between the connected shafts, making them suitable for applications where electrical grounding needs to be minimized.

Spider couplings are commonly used in various machinery and equipment, such as pumps, compressors, conveyors, fans, and industrial machinery. They are particularly well-suited for applications that require flexibility, misalignment compensation, vibration reduction, and ease of maintenance.

China manufacturer High Quality HRC Coupling with Spider  China manufacturer High Quality HRC Coupling with Spider
editor by CX 2024-05-13

China best Coupling Element Sbt Coupling Spider PU Spider

Product Description

Coupling Element SBT Coupling Spider PU Spider

Name Jaw rubber Spider
Material Silicone, EPDM, NR, NBR, FKM, SBR, HNBR, IIR, CR FFKM etc silicon,fluorine,NBR,FPM,EPDM,SILCONE ACM,HNBR
Size According to the drawing or sample
Color According to your requirement (Panton color card)
Application Parts are used on vehicles, printing machines, food processing machines, textile machines, electronic machines, etc.
Inspection instruments Excellent chemical and physical property, excellent oil- resistance, high temperature stability, etc.
Package Inner plastic bag/outside carton/wooden pallets/ or any other special package as per customer’s 
requirements
Final inspection We’ll make a final QC 100% inspection to make sure a good quality before delivery

Other related products

 

FAQ

Q: Are you manufacturer or trading company?
A: We are manufacturer, engineer had rich experience over 20 years. 

Q: How to get the quickest quotation?
A: Sending drawing, material, quantity and other rrequirements by email. 

Q: How to get quotation without drawing?
A: Possible send sample, pictures or detail descriptions of products to us, we will return you drawing for confirm.

Q: I have an idea for a new product, but not sure if it can be manufactured. Can you help?A. Yes! We are always happy to work with potential customers to evaluate the technical feasibility of your idea or design and we can advise on materials, tooling and likely set-up costs. 

Q: My custom products have already been developed on CAD. Can you use the drawings?
A. Yes! DWG, DXF, IGES, Solidworks and Rhino files can all be used to generate quotes, models and mould tools – this can save time and money in producing your parts.

Q: Can I test my idea/product before committing to mould tool manufacture?
A. Yes, we can use CAD drawings to make models for design and functional evaluations.

Q: What type of plastic/rubber material is best for my design/product?
A. Materials selection depends on the application of your design and the environment in which it will function. We will be happy to discuss the alternatives and suggest the best material.

Q: How to get sample?
A: Free sample is available for your quality evaluation, but you should pay the freight. Regarding customize products, sample and mould order will go first before mass production. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

spider coupling

How does a spider coupling compare to other types of couplings, such as jaw couplings or gear couplings?

Spider couplings, jaw couplings, and gear couplings are all commonly used in mechanical systems for power transmission and misalignment compensation. Each type of coupling has its own unique characteristics and advantages. Here’s a comparison:

  • Spider Couplings: Spider couplings, also known as flexible couplings or jaw/spider couplings, use an elastomeric spider to transmit torque and accommodate misalignment. They are known for their flexibility, vibration dampening, and ability to handle angular, radial, and axial misalignment. Spider couplings are suitable for a wide range of applications and are cost-effective solutions for moderate torque requirements and misalignment compensation.
  • Jaw Couplings: Jaw couplings consist of two hubs with curved jaws that interlock and transmit torque. They are simple to install and provide a secure connection. However, jaw couplings are less effective in accommodating misalignment compared to spider couplings. They are suitable for applications with minimal misalignment and moderate torque transmission.
  • Gear Couplings: Gear couplings use toothed gears to transmit torque between shafts. They are robust and capable of transmitting high torque while accommodating some misalignment. Gear couplings are often used in heavy-duty applications that require precise torque transmission and can tolerate limited misalignment.

When comparing these couplings, spider couplings stand out for their versatility in handling various types of misalignment and providing vibration dampening. Jaw couplings are simpler and suitable for applications with minimal misalignment, while gear couplings excel in heavy-duty applications with high torque requirements. The choice between these couplings depends on the specific requirements of the application, including torque, misalignment compensation, space limitations, and cost considerations.

spider coupling

Are there any recent advancements or innovations in spider coupling technology?

Yes, there have been several recent advancements and innovations in spider coupling technology aimed at enhancing their performance, durability, and versatility. Some of the notable advancements include:

  • Advanced Materials: Manufacturers are using new elastomeric materials that offer improved resistance to wear, temperature fluctuations, and chemicals. These materials extend the lifespan of spider couplings and broaden their range of applications.
  • Enhanced Designs: Innovative design improvements are being made to optimize torque transmission, misalignment compensation, and vibration dampening. These designs aim to provide better coupling performance in various operating conditions.
  • Customization: Some manufacturers offer customizable spider couplings to match specific application requirements. This includes tailoring the coupling’s stiffness, torque capacity, and damping characteristics to suit different machinery and industries.
  • Smart Couplings: Integration of sensors and monitoring technology into spider couplings allows real-time data collection on factors such as temperature, vibration, and load distribution. This data helps in predictive maintenance and optimizing equipment performance.
  • Composite Couplings: Composite materials are being utilized in spider couplings to provide a balance between lightweight design, high strength, and corrosion resistance. These couplings find applications in industries where weight reduction and durability are critical.
  • Energy Efficiency: Some spider couplings are designed with energy efficiency in mind, aiming to reduce power losses due to damping while maintaining reliable torque transmission.

These advancements demonstrate the ongoing efforts to enhance spider coupling technology, making them more adaptable to modern machinery requirements. As technology continues to evolve, spider couplings are becoming increasingly sophisticated and capable of meeting the challenges posed by various industries and applications.

spider coupling

How do you properly install and maintain a spider coupling in machinery?

Installation:

Proper installation of a spider coupling is essential to ensure its optimal performance and longevity. Here are the steps for installing a spider coupling:

  1. Ensure Safety: Before starting any installation, make sure the machinery is properly shut down and all energy sources are disconnected.
  2. Inspect Components: Check the hubs, elastomeric spider, and shafts for any damage or debris. Ensure that the components match the correct specifications.
  3. Align Shafts: Align the shafts to minimize initial misalignment before inserting the elastomeric spider.
  4. Insert Spider: Place the elastomeric spider into one of the hubs, ensuring that the lobes or fins are correctly aligned with the grooves in the hub.
  5. Align Second Hub: Carefully align the second hub with the first one, making sure the spider lobes fit into the grooves of both hubs.
  6. Press Hubs Together: Gently press the hubs together until they meet. Avoid using excessive force, as this could damage the elastomeric spider.
  7. Check Alignment: After installation, check the alignment of the shafts and the coupling. Misalignment should not exceed the manufacturer’s recommended limits.
  8. Tighten Fasteners: Tighten the fasteners on the hubs according to the manufacturer’s torque specifications. Use a torque wrench to ensure proper tightening.
  9. Verify Clearance: Check for proper clearance between the coupling and surrounding components to prevent interference during operation.
  10. Run System: Start the machinery and monitor the coupling for any unusual vibrations or noise. Make any necessary adjustments if issues are detected.

Maintenance:

Maintaining a spider coupling is important to ensure its continued performance and prevent premature failure. Here are some maintenance tips:

  • Regular Inspection: Periodically inspect the spider coupling for signs of wear, damage, or deterioration. Look for cracks, tears, or other abnormalities in the elastomeric spider.
  • Clean Environment: Keep the coupling and surrounding area clean from dirt, debris, and contaminants that could impact its performance.
  • Lubrication: Spider couplings are self-lubricating due to the elastomeric material. Avoid using additional lubricants, as they can deteriorate the elastomeric properties.
  • Temperature Consideration: Be aware of the temperature range specified by the manufacturer for the elastomeric material. Extreme temperatures can affect the performance and lifespan of the coupling.
  • Replace Worn Parts: If the elastomeric spider shows signs of wear, replace it with a new one from the manufacturer. Do not continue using a worn or damaged spider.
  • Monitor Vibrations: Regularly monitor the machinery for unusual vibrations or noise, as these can indicate issues with the coupling. Address any problems promptly.
  • Follow Manufacturer Guidelines: Adhere to the manufacturer’s recommended maintenance schedule and guidelines for the specific spider coupling model.

Proper installation and regular maintenance contribute to the reliable and efficient operation of a spider coupling in machinery.

China best Coupling Element Sbt Coupling Spider PU Spider  China best Coupling Element Sbt Coupling Spider PU Spider
editor by CX 2024-05-13

China Hot selling L Type L070 Flexible Coupling Jaw Coupling with Rubber Spider Elastomer

Product Description

Product Description

L type L070 Flexible Coupling Jaw Coupling with Rubber Spider Elastomer

Features of L curved jaw coupling:

1.Easy of inspection,easy maintenance

2.Can absorb vibration,parallel,angular and axial misalignments 

3.Identical clockwise and anticlockwise rotational charateristics

4.Both ends material is iron, intermediate for rubber materials

5.Simple configuration, setscrew type,low price

6.Hole can be self-processing,easy facilitate

7.For step motor,screw, machine positioning system

Product Parameters

Packaging & Shipping

Packaging:
Chain+Plastic Bag+ Carton+Wooden case( If you have other requirements, we can customized according to customer requirements packaging. )

Shipping :
1.Most of the standard ones are in stock which we can send in 3-10 days after inspection and package.
2. Customized products delivery time should be determined according to the number.

Company Profile

About Mighty Machinery

ZheJiang Mighty Machinery Co., Ltd., specializes in manufacturing Mechanical Power Transmission Products. After over 13 years hard work, MIGHTY have already get the certificate of ISO9001:2000 and become a holding company for 3 manufacturing factories. 

 

MIGHTY advantage

1, Abundant experience  in the mechanical processing industries.

2,Large quality of various material purchase and stock in warhouse which ensure the low cost for the material and  production in time.

3,Now have 5 technical staff, we have strong capacity for design and process design, and more than 70 worker now work in our FTY and  double shift eveyday.

4,Strick quality control are apply in the whole prodution. we have incoming inspection,process inspection and final production inspection which can ensure the perfect of the goods quality.
 

5,Long time cooperate with the Global Buyer, make us easy to understand the csutomer and handle the export.

FAQ

Q1: Are you trading company or manufacturer ?

A: We are factory. 

 

Q2:Do you provide samples ? is it free or extra ?

A: : Yes, we could offer the sample but not for free.Actually we have a very good price principle, when you make the bulk order then cost of sample will be return to you.

 

Q3: How long is your delivery time?

A: Generally it is 10-15 days if the goods are in stock. or it is 7-25 days if the goods are not in stock, it is according to quantity.

 

Q4:How long is your warranty?

A: Our Warranty is 12 month.

 

Q5 :Do you have inspection procedures for coupling ?

A:100% self-inspection before packing

 

Q6. What’s your payment?

A:1) 100% T/T. 2) 30% in advance, others before shipment. 3) L/C Q7:Can I have a visit to your factory before the order? A: Sure,welcome to visit our factory.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

spider coupling

What are the common challenges associated with spider coupling misalignment and how can they be addressed?

Misalignment is a common challenge in spider couplings that can lead to reduced efficiency, increased wear, and potential coupling failure. Here are the common challenges associated with misalignment and how they can be addressed:

  • Reduced Torque Transmission: Misalignment can decrease the effective torque transmitted between the shafts, leading to inefficiency and potential overload. Regularly check and align the shafts according to the manufacturer’s recommendations to ensure proper torque transmission.
  • Vibration and Noise: Misalignment can cause excessive vibrations and noise in the machinery. Implement precision alignment techniques during installation to minimize misalignment-induced vibrations and noise.
  • Increased Wear: Misalignment results in uneven loading on the elastomeric spider, causing premature wear and potential failure. Regularly inspect the coupling for signs of wear and replace the elastomeric spider if necessary. Address misalignment promptly to prevent excessive wear.
  • Heat Generation: Misalignment can generate heat due to friction between the elastomeric spider and the hubs. This can lead to accelerated wear and reduced coupling lifespan. Proper alignment helps minimize heat generation and associated issues.
  • Shaft Fatigue: Severe misalignment can induce shaft fatigue and stress concentrations, leading to shaft failure over time. Avoid excessive misalignment and ensure that the coupling is properly aligned during installation.
  • Reduced Service Life: Misalignment puts additional stress on the elastomeric spider, reducing its service life. Proper alignment and maintenance practices can extend the service life of the coupling.
  • Performance Variations: Misalignment can lead to variations in performance and inconsistent operation of the machinery. Regularly monitor the coupling’s performance and address any issues promptly to ensure consistent operation.

To address these challenges, it’s crucial to prioritize precision alignment during the installation of the spider coupling. Follow the manufacturer’s guidelines for alignment tolerances and use alignment tools and techniques to achieve accurate alignment. Regular maintenance, including inspections and alignment checks, will help mitigate the negative effects of misalignment and ensure the reliable performance of spider couplings in industrial applications.

spider coupling

What are the symptoms of spider coupling wear or deterioration, and how can they be identified?

Spider couplings, like other mechanical components, can experience wear and deterioration over time due to factors such as torque, misalignment, and environmental conditions. Identifying the symptoms of wear is crucial for maintaining coupling performance and preventing unexpected failures. Here are some common symptoms of spider coupling wear and deterioration:

  • Vibration and Noise: Increased vibration or unusual noise during operation can indicate wear in the spider coupling. Excessive wear can lead to reduced dampening of vibrations and increased noise levels.
  • Reduced Torque Transmission: If the coupling is no longer transmitting torque efficiently, it may indicate wear or damage to the elastomeric spider. Reduced torque transmission can result in decreased equipment performance.
  • Visible Cracks or Tears: Inspect the elastomeric spider for visible cracks, tears, or signs of deformation. These issues can lead to uneven load distribution and compromised coupling function.
  • Uneven Shaft Movement: Misalignment caused by wear can lead to uneven movement of connected shafts. This can be observed through irregular motion or wobbling during operation.
  • Increased Heat Generation: If the coupling is generating more heat than usual, it may indicate excessive friction due to wear. Overheating can accelerate wear and affect coupling performance.
  • Irregular Performance: If machinery or equipment connected by the coupling experiences irregular or unpredictable behavior, it could be a sign of coupling wear affecting torque transmission.

To identify these symptoms, regular visual inspections, vibration analysis, and performance monitoring are recommended. If any of these symptoms are observed, it’s advisable to replace the worn or damaged spider coupling with a new one. Routine maintenance and timely replacement can help ensure the continued reliability and performance of spider couplings in mechanical systems.

spider coupling

What are the advantages of using a spider coupling in industrial applications?

Spider couplings offer several advantages that make them a popular choice for various industrial applications. Here are the key advantages:

  • Misalignment Compensation: Spider couplings can accommodate angular, axial, and parallel misalignments between connected shafts. This ability to compensate for misalignment reduces stress on components and extends equipment lifespan.
  • Flexibility: The elastomeric spider provides flexibility that allows for slight movements between the shafts. This flexibility helps prevent excessive wear, reduces vibration transmission, and minimizes the risk of component failure.
  • Vibration Dampening: The elastomeric material of the spider acts as a shock absorber, dampening vibrations generated by rotating machinery. This can lead to improved equipment performance, reduced noise, and enhanced operator comfort.
  • Easy Installation: Spider couplings have a simple design with minimal components, making them easy to install and replace. Their design eliminates the need for precise alignment during installation, saving time and effort.
  • Torque Transmission: Spider couplings efficiently transmit torque from one shaft to another, ensuring that power is effectively transferred between connected components.
  • Minimal Maintenance: Spider couplings require minimal maintenance due to their self-lubricating and wear-resistant elastomeric material. This reduces downtime and maintenance costs for industrial machinery.
  • Compact Design: Spider couplings have a compact and lightweight design, making them suitable for applications where space is limited. Their small size allows for easy integration into various systems.
  • Cost-Effective: Spider couplings are relatively inexpensive compared to other coupling types, making them a cost-effective solution for a wide range of industrial applications.
  • Electric Insulation: In applications where electrical isolation is important, spider couplings made from electrically insulating materials can prevent the transmission of electrical currents between shafts.
  • Wide Range of Sizes: Spider couplings are available in various sizes and configurations to accommodate different shaft diameters and torque requirements.

Due to these advantages, spider couplings are commonly used in industries such as manufacturing, automation, packaging, material handling, and more, where flexibility, misalignment compensation, and efficient torque transmission are essential for optimal equipment performance.

China Hot selling L Type L070 Flexible Coupling Jaw Coupling with Rubber Spider Elastomer  China Hot selling L Type L070 Flexible Coupling Jaw Coupling with Rubber Spider Elastomer
editor by CX 2024-05-10

China Good quality CNC Aluminum Elastic Rubber Spider Jaw Shaft Coupler GF14*22 20*25 25*30 40*50 Shaft Flexible Coupling Ball Screw Plum Coupling

Product Description

Product Description

Coupling Deatails

Name: High precision plum blossom
coupling Model: LM-Material: Aviation Aluminum Alloy
Working temperature: -40 ° C ~ 100 ° C
Support customization: Factory direct sales support customization.
Features:
1.Intermediate Elastomer Connection-Absorbs vibration, compensates for radial, angular, and axial 2.misalignment
3.Oil resistance and electrical insulation
4.Clockwise and counterclockwise rotation characteristics are identical-there are 3 different hardness 5.elastomer
6.Fixation by clamping screw.

Model parameter

ΦD

L

LF

LP

F

M

Tightening screw torque

(N.M)

GF-14X22

14

22

14.3

6.6

3.8

M 3

0.7

GF-20X25

20

25

16.7

8.6

4

M 3

0.7

GF-20X30

20

30

19.25

8.6

5.3

M 4

1.7

GF-25X30

25

30

20.82

11.6

5.6

M 4

1.7

GF-25X34

25

34

22.82

11.6

5.6

M 4

1.7

GF-30X35

30

35

23

11.5

5.75

M 4

1.7

GF-30X40

30

40

25.6

11.5

10

M 4

1.7

GF-40X50

40

50

32.1

14.5

10

M 5

4

GF-40X55

40

55

34.5

14.5

10

M 5

4

GF-40X66

40

66

40

14.5

12.75

M 5

4

GF-55X49

55

49

32

16.1

13.5

M 6

8.4

GF-55X78

55

78

46.4

16.1

15.5

M 6

8.4

GF-65X80

65

80

48.5

17.3

18.1

M 8

10.5

GF-65X90

65

90

53.5

17.3

18.1

M 8

10.5

 

Product Parameters

Detailed Photos

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

spider coupling

What materials are typically used in manufacturing spider couplings and why?

Spider couplings are constructed using a combination of materials to achieve durability, flexibility, and efficient torque transmission. The choice of materials depends on factors such as application requirements, environmental conditions, and the desired balance between strength and flexibility. Common materials used in manufacturing spider couplings include:

  • Aluminum: Aluminum is lightweight and corrosion-resistant, making it suitable for applications where weight reduction is important. It offers good mechanical properties and can be used in various industries.
  • Steel: Steel provides excellent strength and durability. It’s often used in heavy-duty applications where high torque transmission is required. Surface treatments can enhance corrosion resistance.
  • Stainless Steel: Stainless steel offers corrosion resistance in aggressive environments. It’s commonly used in industries such as food processing, pharmaceuticals, and chemical processing.
  • Cast Iron: Cast iron is known for its high compressive strength and wear resistance. It’s suitable for applications requiring robust construction and can handle high torque loads.
  • Plastic/Polymer: Certain polymers and plastics, such as polyurethane or nylon, are used for the elastomeric spider element. These materials provide flexibility, vibration dampening, and misalignment compensation.

The choice of materials depends on the specific requirements of the application. For example, aluminum or stainless steel may be chosen for industries requiring corrosion resistance, while steel or cast iron may be selected for heavy-duty applications. The elastomeric spider is typically made from a durable polymer to ensure flexibility and effective torque transmission while accommodating misalignment. Overall, selecting the right materials ensures that spider couplings can withstand the demands of the intended application and provide reliable performance over their lifespan.

spider coupling

What are the symptoms of spider coupling wear or deterioration, and how can they be identified?

Spider couplings, like other mechanical components, can experience wear and deterioration over time due to factors such as torque, misalignment, and environmental conditions. Identifying the symptoms of wear is crucial for maintaining coupling performance and preventing unexpected failures. Here are some common symptoms of spider coupling wear and deterioration:

  • Vibration and Noise: Increased vibration or unusual noise during operation can indicate wear in the spider coupling. Excessive wear can lead to reduced dampening of vibrations and increased noise levels.
  • Reduced Torque Transmission: If the coupling is no longer transmitting torque efficiently, it may indicate wear or damage to the elastomeric spider. Reduced torque transmission can result in decreased equipment performance.
  • Visible Cracks or Tears: Inspect the elastomeric spider for visible cracks, tears, or signs of deformation. These issues can lead to uneven load distribution and compromised coupling function.
  • Uneven Shaft Movement: Misalignment caused by wear can lead to uneven movement of connected shafts. This can be observed through irregular motion or wobbling during operation.
  • Increased Heat Generation: If the coupling is generating more heat than usual, it may indicate excessive friction due to wear. Overheating can accelerate wear and affect coupling performance.
  • Irregular Performance: If machinery or equipment connected by the coupling experiences irregular or unpredictable behavior, it could be a sign of coupling wear affecting torque transmission.

To identify these symptoms, regular visual inspections, vibration analysis, and performance monitoring are recommended. If any of these symptoms are observed, it’s advisable to replace the worn or damaged spider coupling with a new one. Routine maintenance and timely replacement can help ensure the continued reliability and performance of spider couplings in mechanical systems.

spider coupling

What factors should be considered when selecting a spider coupling for a specific application?

Choosing the right spider coupling for a specific application requires careful consideration of various factors to ensure optimal performance and reliability. Here are the key factors to consider:

  • Torque Requirements: Determine the torque that the coupling needs to transmit between the shafts. Select a spider coupling that can handle the required torque without exceeding its limitations.
  • Misalignment Compensation: Assess the type and degree of misalignment that the coupling needs to accommodate. Different spider coupling designs offer varying levels of misalignment compensation.
  • Operating Conditions: Consider the operating environment, including temperature, humidity, and exposure to chemicals or contaminants. Choose a spider coupling with elastomeric material that can withstand these conditions.
  • Shaft Diameters: Measure the diameters of the connected shafts. Ensure that the selected spider coupling matches the shaft sizes to achieve a secure and reliable fit.
  • Space Limitations: Evaluate the available space for installing the coupling. Choose a compact spider coupling design that fits within the available dimensions.
  • Shaft Speed: Determine the rotational speed of the shafts. Ensure that the selected spider coupling can handle the speed range without causing excessive wear or vibrations.
  • Vibration Dampening: If vibration reduction is a priority, select a spider coupling with elastomeric material that offers effective vibration dampening properties.
  • Electrical Isolation: In applications where electrical isolation is necessary, choose a spider coupling with electrically insulating properties to prevent current transmission between shafts.
  • Chemical Compatibility: If the machinery operates with specific chemicals or fluids, ensure that the elastomeric material of the coupling is compatible with these substances.
  • Cost Consideration: Evaluate the budget available for the coupling. Consider both the upfront cost and the potential savings from reduced maintenance and downtime.
  • Manufacturer Reputation: Choose spider couplings from reputable manufacturers known for producing high-quality and reliable products.
  • Application Type: Different industries and applications have unique requirements. Consider the specific demands of the application, such as pumps, compressors, conveyors, etc.

By carefully evaluating these factors, you can select a spider coupling that best matches the requirements of your application, ensuring efficient power transmission, misalignment compensation, and overall system performance.

China Good quality CNC Aluminum Elastic Rubber Spider Jaw Shaft Coupler GF14*22 20*25 25*30 40*50 Shaft Flexible Coupling Ball Screw Plum Coupling  China Good quality CNC Aluminum Elastic Rubber Spider Jaw Shaft Coupler GF14*22 20*25 25*30 40*50 Shaft Flexible Coupling Ball Screw Plum Coupling
editor by CX 2024-05-09