China factory Aluminum Clamp Style Standard Flexible Elastic Rubber Spider Star Jaw Type Flexible Coupling

Product Description

Item No. φD L L1 L2 L3 S M Tighten the strength(N.m)
SG7-10-14- 15 20 6 6 3 1 M3 1
SG7-10-25- 26 26 8 8 4 1 M4 1.5
SG7-10-30- 32 32 10 9 5 1.5 M4 1.7
SG7-10-40- 40 50 17 12 8.5 2 M5 4
SG7-10-55- 56 58 20 14 10 2 M5 4
SG7-10-65- 66 62 21 15 10.5 2.5 M8 15
SG7-10-80- 82 86 31 18 15.5 3 M8 15
SG7-10-95- 98 94 34 20 17 3 M8 15
SG7-10-108- 108 123 46 24 23 3.5 M8 15

1111

Item No. Rated torque Maximum Torque Max Speed Inertia Moment N.m rad RRO Tilting Tolerance End-play Weight:(g)
SG7-10-14- 1.1N.m 2.2N.m 19000prm 3.9×10-4kg.m² 45N.m/rad 0.02mm 1.0c +0.6mm 20
SG7-10-25- 6.0N.m 12N.m 16000prm 6.8×10kg.m² 56N.m/rad 0.02mm 1.0c +0.6mm 25
SG7-10-30- 6.5N.m 13N.m 15000prm 8.3×10kg.m² 70N.m/rad 0.02mm 1.0c +0.6mm 46
SG7-10-40- 32N.m 64N.m 13000prm 9.3×10kg.m² 490N.m/rad 0.02mm 1.0c +0.8mm 135
SG7-10-55- 46N.m 92N.m 10500prm 3.8×10-3kg.m² 1470N.m/rad 0.02mm 1.0c +0.8mm 300
SG7-10-65- 109N.m 218N.m 8300prm 8×10kg.m² 2700N.m/rad 0.02mm 1.0c +0.8mm 570
SG7-10-80- 135N.m 270N.m 7000prm 1.5×10-2kg.m² 3100N.m/rad 0.02mm 1.0c +1.0mm 910
SG7-10-95- 260N.m 520N.m 6000prm 1.9×10kg.m² 4400N.m/rad 0.02mm 1.0c +1.0mm 1530
SG7-10-108- 430N.m 860N.m 5000prm 3×10kg.m² 5700N.m/rad 0.02mm 1.0c +1.0mm 2200

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

spider coupling

Can a spider coupling handle high levels of torque and angular misalignment?

Yes, a spider coupling is designed to handle a range of torque levels and accommodate angular misalignment. The elastomeric spider element, which is a key component of the coupling, provides the flexibility needed to transmit torque and compensate for misalignment. Here’s how a spider coupling handles these factors:

  • High Torque: Spider couplings are engineered to transmit torque efficiently. The elastomeric spider deforms slightly under torque load, allowing it to transfer power between the shafts. The specific torque capacity depends on the design, materials, and size of the coupling. High-performance spider couplings can handle significant torque loads, making them suitable for various industrial applications.
  • Angular Misalignment: Spider couplings can accommodate angular misalignment between the connected shafts. The elastomeric spider can flex in different directions, allowing for a certain degree of angular deviation between the shafts. This flexibility helps prevent excessive stress on the shafts and components, enhancing the coupling’s lifespan and reliability.

However, it’s important to note that while spider couplings can handle a range of torque levels and angular misalignment, there are limitations to how much misalignment they can compensate for. Excessive misalignment can lead to premature wear and reduced coupling performance. It’s recommended to follow the manufacturer’s guidelines for allowable misalignment and torque capacity to ensure optimal coupling performance and longevity.

spider coupling

What are the symptoms of spider coupling wear or deterioration, and how can they be identified?

Spider couplings, like other mechanical components, can experience wear and deterioration over time due to factors such as torque, misalignment, and environmental conditions. Identifying the symptoms of wear is crucial for maintaining coupling performance and preventing unexpected failures. Here are some common symptoms of spider coupling wear and deterioration:

  • Vibration and Noise: Increased vibration or unusual noise during operation can indicate wear in the spider coupling. Excessive wear can lead to reduced dampening of vibrations and increased noise levels.
  • Reduced Torque Transmission: If the coupling is no longer transmitting torque efficiently, it may indicate wear or damage to the elastomeric spider. Reduced torque transmission can result in decreased equipment performance.
  • Visible Cracks or Tears: Inspect the elastomeric spider for visible cracks, tears, or signs of deformation. These issues can lead to uneven load distribution and compromised coupling function.
  • Uneven Shaft Movement: Misalignment caused by wear can lead to uneven movement of connected shafts. This can be observed through irregular motion or wobbling during operation.
  • Increased Heat Generation: If the coupling is generating more heat than usual, it may indicate excessive friction due to wear. Overheating can accelerate wear and affect coupling performance.
  • Irregular Performance: If machinery or equipment connected by the coupling experiences irregular or unpredictable behavior, it could be a sign of coupling wear affecting torque transmission.

To identify these symptoms, regular visual inspections, vibration analysis, and performance monitoring are recommended. If any of these symptoms are observed, it’s advisable to replace the worn or damaged spider coupling with a new one. Routine maintenance and timely replacement can help ensure the continued reliability and performance of spider couplings in mechanical systems.

spider coupling

What are the advantages of using a spider coupling in industrial applications?

Spider couplings offer several advantages that make them a popular choice for various industrial applications. Here are the key advantages:

  • Misalignment Compensation: Spider couplings can accommodate angular, axial, and parallel misalignments between connected shafts. This ability to compensate for misalignment reduces stress on components and extends equipment lifespan.
  • Flexibility: The elastomeric spider provides flexibility that allows for slight movements between the shafts. This flexibility helps prevent excessive wear, reduces vibration transmission, and minimizes the risk of component failure.
  • Vibration Dampening: The elastomeric material of the spider acts as a shock absorber, dampening vibrations generated by rotating machinery. This can lead to improved equipment performance, reduced noise, and enhanced operator comfort.
  • Easy Installation: Spider couplings have a simple design with minimal components, making them easy to install and replace. Their design eliminates the need for precise alignment during installation, saving time and effort.
  • Torque Transmission: Spider couplings efficiently transmit torque from one shaft to another, ensuring that power is effectively transferred between connected components.
  • Minimal Maintenance: Spider couplings require minimal maintenance due to their self-lubricating and wear-resistant elastomeric material. This reduces downtime and maintenance costs for industrial machinery.
  • Compact Design: Spider couplings have a compact and lightweight design, making them suitable for applications where space is limited. Their small size allows for easy integration into various systems.
  • Cost-Effective: Spider couplings are relatively inexpensive compared to other coupling types, making them a cost-effective solution for a wide range of industrial applications.
  • Electric Insulation: In applications where electrical isolation is important, spider couplings made from electrically insulating materials can prevent the transmission of electrical currents between shafts.
  • Wide Range of Sizes: Spider couplings are available in various sizes and configurations to accommodate different shaft diameters and torque requirements.

Due to these advantages, spider couplings are commonly used in industries such as manufacturing, automation, packaging, material handling, and more, where flexibility, misalignment compensation, and efficient torque transmission are essential for optimal equipment performance.

China factory Aluminum Clamp Style Standard Flexible Elastic Rubber Spider Star Jaw Type Flexible Coupling  China factory Aluminum Clamp Style Standard Flexible Elastic Rubber Spider Star Jaw Type Flexible Coupling
editor by CX 2024-04-15