China best Aluminum Clamp Style Standard Flexible Elastic Rubber Spider Star Jaw Type Flexible Coupling

Product Description

Item No. φD L L1 L2 L3 S M Tighten the strength(N.m)
SG7-10-14- 15 20 6 6 3 1 M3 1
SG7-10-25- 26 26 8 8 4 1 M4 1.5
SG7-10-30- 32 32 10 9 5 1.5 M4 1.7
SG7-10-40- 40 50 17 12 8.5 2 M5 4
SG7-10-55- 56 58 20 14 10 2 M5 4
SG7-10-65- 66 62 21 15 10.5 2.5 M8 15
SG7-10-80- 82 86 31 18 15.5 3 M8 15
SG7-10-95- 98 94 34 20 17 3 M8 15
SG7-10-108- 108 123 46 24 23 3.5 M8 15

1111111111111111

Item No. Rated torque Maximum Torque Max Speed Inertia Moment N.m rad RRO Tilting Tolerance End-play Weight:(g)
SG7-10-14- 1.1N.m 2.2N.m 19000prm 3.9×10-4kg.m² 45N.m/rad 0.02mm 1.0c +0.6mm 20
SG7-10-25- 6.0N.m 12N.m 16000prm 6.8×10kg.m² 56N.m/rad 0.02mm 1.0c +0.6mm 25
SG7-10-30- 6.5N.m 13N.m 15000prm 8.3×10kg.m² 70N.m/rad 0.02mm 1.0c +0.6mm 46
SG7-10-40- 32N.m 64N.m 13000prm 9.3×10kg.m² 490N.m/rad 0.02mm 1.0c +0.8mm 135
SG7-10-55- 46N.m 92N.m 10500prm 3.8×10-3kg.m² 1470N.m/rad 0.02mm 1.0c +0.8mm 300
SG7-10-65- 109N.m 218N.m 8300prm 8×10kg.m² 2700N.m/rad 0.02mm 1.0c +0.8mm 570
SG7-10-80- 135N.m 270N.m 7000prm 1.5×10-2kg.m² 3100N.m/rad 0.02mm 1.0c +1.0mm 910
SG7-10-95- 260N.m 520N.m 6000prm 1.9×10kg.m² 4400N.m/rad 0.02mm 1.0c +1.0mm 1530
SG7-10-108- 430N.m 860N.m 5000prm 3×10kg.m² 5700N.m/rad 0.02mm 1.0c +1.0mm 2200

spider coupling

Can a spider coupling handle high levels of torque and angular misalignment?

Yes, a spider coupling is designed to handle a range of torque levels and accommodate angular misalignment. The elastomeric spider element, which is a key component of the coupling, provides the flexibility needed to transmit torque and compensate for misalignment. Here’s how a spider coupling handles these factors:

  • High Torque: Spider couplings are engineered to transmit torque efficiently. The elastomeric spider deforms slightly under torque load, allowing it to transfer power between the shafts. The specific torque capacity depends on the design, materials, and size of the coupling. High-performance spider couplings can handle significant torque loads, making them suitable for various industrial applications.
  • Angular Misalignment: Spider couplings can accommodate angular misalignment between the connected shafts. The elastomeric spider can flex in different directions, allowing for a certain degree of angular deviation between the shafts. This flexibility helps prevent excessive stress on the shafts and components, enhancing the coupling’s lifespan and reliability.

However, it’s important to note that while spider couplings can handle a range of torque levels and angular misalignment, there are limitations to how much misalignment they can compensate for. Excessive misalignment can lead to premature wear and reduced coupling performance. It’s recommended to follow the manufacturer’s guidelines for allowable misalignment and torque capacity to ensure optimal coupling performance and longevity.

spider coupling

Are there any recent advancements or innovations in spider coupling technology?

Yes, there have been several recent advancements and innovations in spider coupling technology aimed at enhancing their performance, durability, and versatility. Some of the notable advancements include:

  • Advanced Materials: Manufacturers are using new elastomeric materials that offer improved resistance to wear, temperature fluctuations, and chemicals. These materials extend the lifespan of spider couplings and broaden their range of applications.
  • Enhanced Designs: Innovative design improvements are being made to optimize torque transmission, misalignment compensation, and vibration dampening. These designs aim to provide better coupling performance in various operating conditions.
  • Customization: Some manufacturers offer customizable spider couplings to match specific application requirements. This includes tailoring the coupling’s stiffness, torque capacity, and damping characteristics to suit different machinery and industries.
  • Smart Couplings: Integration of sensors and monitoring technology into spider couplings allows real-time data collection on factors such as temperature, vibration, and load distribution. This data helps in predictive maintenance and optimizing equipment performance.
  • Composite Couplings: Composite materials are being utilized in spider couplings to provide a balance between lightweight design, high strength, and corrosion resistance. These couplings find applications in industries where weight reduction and durability are critical.
  • Energy Efficiency: Some spider couplings are designed with energy efficiency in mind, aiming to reduce power losses due to damping while maintaining reliable torque transmission.

These advancements demonstrate the ongoing efforts to enhance spider coupling technology, making them more adaptable to modern machinery requirements. As technology continues to evolve, spider couplings are becoming increasingly sophisticated and capable of meeting the challenges posed by various industries and applications.

spider coupling

What is a spider coupling and how is it used in mechanical systems?

A spider coupling, also known as a jaw coupling or elastomeric coupling, is a type of flexible coupling used to connect two shafts while accommodating misalignment and transmitting torque between them. It consists of three main components: two hubs and an elastomeric spider or insert that fits between them.

The elastomeric spider is typically made of a flexible and durable material, such as rubber or polyurethane, with a series of lobes or fins that fit into matching grooves on the inner surfaces of the hubs. These lobes allow the spider to flex and absorb misalignments between the connected shafts while transmitting torque.

The spider coupling is used in mechanical systems to:

  • Transmit Torque: The primary function of a spider coupling is to transmit torque from one shaft to another. As the shafts rotate, the elastomeric spider deforms slightly, allowing the hubs to move relative to each other while maintaining torque transmission.
  • Accommodate Misalignment: Spider couplings can accommodate different types of misalignment, including angular, axial, and parallel misalignments, without causing excessive stress on the connected components. This flexibility helps prevent premature wear and failure.
  • Dampen Vibrations: The elastomeric material of the spider acts as a shock absorber, dampening vibrations and reducing the transmission of vibrations between the connected shafts. This can improve overall system performance and reduce wear on components.
  • Isolate Shock Loads: In applications with sudden changes in torque or shock loads, the spider coupling can absorb and dampen these shocks, protecting the connected components from damage.
  • Reduce Maintenance: Spider couplings require minimal maintenance due to their simple design and absence of lubrication points. This can lead to reduced downtime and maintenance costs in industrial machinery.
  • Provide Electric Insulation: Spider couplings can provide electrical isolation between the connected shafts, making them suitable for applications where electrical grounding needs to be minimized.

Spider couplings are commonly used in various machinery and equipment, such as pumps, compressors, conveyors, fans, and industrial machinery. They are particularly well-suited for applications that require flexibility, misalignment compensation, vibration reduction, and ease of maintenance.

China best Aluminum Clamp Style Standard Flexible Elastic Rubber Spider Star Jaw Type Flexible Coupling  China best Aluminum Clamp Style Standard Flexible Elastic Rubber Spider Star Jaw Type Flexible Coupling
editor by CX 2023-12-13